Skip to main content

Respiratory sinus arrhythmia stabilizes mean arterial blood pressure at high-frequency interval in healthy humans

Abstract

Purpose

Arterial blood pressure variations are an independent risk factor for end organ failure. Respiratory sinus arrhythmia (RSA) is a sign of a healthy cardiovascular system. However, whether RSA counteracts arterial blood pressure variations during the respiratory cycle remains controversial. We restricted normal RSA with non-invasive intermittent positive pressure ventilation (IPPV) to test the hypothesis that RSA normally functions to stabilize mean arterial blood pressure.

Methods

Ten young volunteers were investigated during metronome-paced breathing and IPPV. Heart rate (ECG), mean arterial blood pressure and left stroke volume (finger arterial pressure curve) and right stroke volume (pulsed ultrasound Doppler) were recorded, while systemic and pulmonary blood flow were calculated beat-by-beat. Respiratory variations (high-frequency power, 0.15–0.40 Hz) in cardiovascular variables were estimated by spectral analysis. Phase angles and correlation were calculated by cross-spectral analysis.

Results

The magnitude of RSA was reduced from 4.9 bpm2 (95 % CI 3.0, 6.2) during metronome breathing to 2.8 bpm2 (95 % CI 1.1, 5.0) during IPPV (p = 0.03). Variations in mean arterial blood pressure were greater (2.3 mmHg2 (95 % CI 1.4, 3.9) during IPPV than during metronome breathing (1.0 mmHg2 [95 % CI 0.7, 1.3]) (p = 0.014). Respiratory variations in right and left stroke volumes were inversely related in the respiratory cycle during both metronome breathing and IPPV.

Conclusions

RSA magnitude is lower and mean arterial blood pressure variability is greater during IPPV than during metronome breathing. We conclude that in healthy humans, RSA stabilizes mean arterial blood pressure at respiratory frequency.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

CO:

Cardiac output

HR:

Heart rate measured from ECG

IPPV:

Intermittent positive pressure ventilation

L-CO:

Cardiac output from the left cardiac ventricle

L-SV:

Stroke volume from the left cardiac ventricle, estimated from blood pressure wave

MAP:

Mean arterial blood pressure

R-CO:

Cardiac output from the right cardiac ventricle

RE, RESP:

Respiration

RSA:

Respiratory sinus arrhythmia

R-SL:

Stroke length from the pulmonary artery

R-SV:

Stroke volume from the right cardiac ventricle, estimated from ultrasound Doppler

SV:

Stroke volume

References

  • Ben-Tal A, Shamailov SS, Paton JF (2014) Central regulation of heart rate and the appearance of respiratory sinus arrhythmia: New insights from mathematical modeling. Math Biosci. doi:10.1016/j.mbs.2014.06.015

    PubMed  Google Scholar 

  • Ben-Tal A, Shamailov SS, Paton JF (2012) Evaluating the physiological significance of respiratory sinus arrhythmia: looking beyond ventilation-perfusion efficiency. J Physiol (Lond) 590(Pt 8):1989–2008

    Article  CAS  Google Scholar 

  • Bigger JT, Fleiss JL, Rolnitzky LM, Steinman RC (1993) The ability of several short-term measures of RR variability to predict mortality after myocardial infarction. Circulation 88(3):927–934

    Article  CAS  PubMed  Google Scholar 

  • Bogert LWJ, van Lieshout JJ (2005) Non-invasive pulsatile arterial pressure and stroke volume changes from the human finger. Exp Physiol 90(4):437–446

    Article  PubMed  Google Scholar 

  • Cooke WH, Hoag JB, Crossman AA, Kuusela TA, Tahvanainen KU, Eckberg DL (1999) Human responses to upright tilt: a window on central autonomic integration. J Physiol (Lond) 517(Pt 2):617–628

    Article  PubMed Central  CAS  Google Scholar 

  • Cooper HE, Clutton-Brock TH, Parkes MJ (2004) Contribution of the respiratory rhythm to sinus arrhythmia in normal unanesthetized subjects during positive-pressure mechanical hyperventilation. AJP Heart Circ Physiol 286(1):H402–H411

    Article  CAS  Google Scholar 

  • Eckberg DL, Karemaker JM (2009) Point counterpoint: respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism. J Appl Physiol 106(5):1740–1750

    Article  PubMed  Google Scholar 

  • Elstad M (2012) Respiratory variations in pulmonary and systemic blood flow in healthy humans. Acta Physiol (Oxf) 205(3):341–348

    Article  CAS  Google Scholar 

  • Elstad M, Toska K, Chon KH, Raeder EA, Cohen RJ (2001) Respiratory sinus arrhythmia: opposite effects on systolic and mean arterial pressure in supine humans. J Physiol (Lond) 536(Pt 1):251–259

    Article  CAS  Google Scholar 

  • Freyschuss U, Melcher A (1975) Sinus arrhythmia in man: influence of tidal volume and oesophageal pressure. Scand J Clin Lab Invest 35(6):487–496

    Article  CAS  PubMed  Google Scholar 

  • Freyschuss U, Melcher A (1976) Respiratory sinus arrhythmia in man: relation to right ventricular output. Scand J Clin Lab Invest 36(5):407–414

    Article  CAS  PubMed  Google Scholar 

  • Garcia AJ 3rd, Koschnitzky JE, Dashevskiy T, Ramirez JM (2013) Cardiorespiratory coupling in health and disease. Auton Neurosci Basic Clin 175(1–2):26–37

    Article  Google Scholar 

  • Guz A, Innes JA, Murphy K (1987) Respiratory modulation of left ventricular stroke volume in man measured using pulsed Doppler ultrasound. J Physiol 393:499–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hatle L, Angelsen BrAJ (1982) Doppler ultrasound in cardiology: physical principles and clinical applications. Lea and Febiger, Philadelphia

    Google Scholar 

  • Hayano J, Yasuma F, Okada A, Mukai S, Fujinami T (1996) Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation 94(4):842–847

    Article  CAS  PubMed  Google Scholar 

  • Hoffman JIE, Guz A, Charlier AA, Wilcken DEL (1965) Stroke volume in conscious dogs; effect of respiration, posture, and vascular occlusion. J Appl Physiol 20(5):865–877

    CAS  PubMed  Google Scholar 

  • Hollander M, Wolfe DA (1999) Nonparametric statistical methods. Wiley, New York, NY

    Google Scholar 

  • Lahiri MK, Kannankeril PJ, Goldberger JJ (2008) Assessment of autonomic function in cardiovascular disease: physiological basis and prognostic implications. J Am Coll Cardiol 51(18):1725–1733

    Article  PubMed  Google Scholar 

  • Larsen PD, Trent EL, Galletly DC (1999) Cardioventilatory coupling: effects of IPPV. Br J Anaesth 82(4):546–550

    Article  CAS  PubMed  Google Scholar 

  • Lopes TC, Beda A, Granja-Filho PC, Jandre FC, Giannella-Neto A (2011) Cardio-respiratory interactions and relocation of heartbeats within the respiratory cycle during spontaneous and paced breathing. Physiol Meas 32(9):1389–1401

    Article  CAS  PubMed  Google Scholar 

  • Mardia KV (1972) Statistics of directional data. Probability and mathematical statistics. Academic Press Inc. (London) Ltd, London

    Google Scholar 

  • Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, Baig W, Flapan AD, Cowley A, Prescott RJ, Neilson JMM, Fox KAA (1998) Prospective study of heart rate variability and mortality in chronic heart failure : results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-Heart). Circulation 98(15):1510–1516

    Article  CAS  PubMed  Google Scholar 

  • Olsen CO, Tyson GS, Maier GW, Davis JW, Rankin JS (1985) Diminished stroke volume during inspiration: a reverse thoracic pump. Circulation 72(3):668–679

    Article  CAS  PubMed  Google Scholar 

  • Parati G, Mancia G, Di Rienzo M, Castiglioni P, Taylor JA, Studinger P (2006) Point: cardiovascular variability is/is not an index of autonomic control of circulation. J Appl Physiol 101(2):676–682

    Article  PubMed  Google Scholar 

  • Peters J, Fraser C, Stuart RS, Baumgartner W, Robotham JL (1989) Negative intrathoracic pressure decreases independently left ventricular filling and emptying. Am J Phyiol Heart Circ Physiol 257(1):H120–H131

    CAS  Google Scholar 

  • Robotham JL, Rabson J, Permutt S, Bromberger-Barnea B (1979) Left ventricular hemodynamics during respiration. J Appl Physiol 47(6):1295–1303

    CAS  PubMed  Google Scholar 

  • Santamore WP, Amoore JN (1994) Buffering of respiratory variations in venous return by right ventricle: a theoretical analysis. Am J Physiol 267(6 Pt 2):H2163–H2170

    CAS  PubMed  Google Scholar 

  • Sasano N, Vesely AE, Hayano J, Sasano H, Somogyi R, Preiss D, Miyasaka K, Katsuya H, Iscoe S, Fisher JA (2002) Direct effect of Pa-CO2 on respiratory sinus arrhythmia in conscious humans. Am J Physiol Heart Circ Physiol 282(3):H973–H976

    CAS  PubMed  Google Scholar 

  • Saul JP, Berger RD, Chen MH, Cohen RJ (1989) Transfer function analysis of autonomic regulation. II. Respiratory sinus arrhythmia. Am J Physiol Heart Circ Physiol 256(1 Pt 2):H153–H161

    CAS  Google Scholar 

  • Saul JP, Cohen RJ, Levy MN, Schwartz PJ (1994) Respiratory sinus arrhythmia. In: Vagal control of the heart: experimental basis and clinical implications. Futura Publishing Co. Inc., Armonk, pp 511–536

  • Schafer A, Vagedes J (2013) How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. Int J Cardiol 166(1):15–29

    Article  PubMed  Google Scholar 

  • Sin PYW, Webber MR, Galletly DC, Ainslie PN, Brown SJ, Willie CK, Sasse A, Larsen PD, Tzeng YC (2010) Interactions between heart rate variability and pulmonary gas exchange efficiency in humans. Exp Physiol 95(7):788–797

    Article  PubMed  Google Scholar 

  • Tan CO, Taylor JA (2010) Does respiratory sinus arrhythmia serve a buffering role for diastolic pressure fluctuations? Am J Physiol Heart Circ Physiol 298(5):H1492–H1498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Task Force of the European Society of C, the North American Society of Pacing E (1996) Heart rate variability : Standards of measurement, physiological interpretation, and clinical use. Circulation 93(5):1043–1065

    Article  Google Scholar 

  • Tatasciore A, Renda G, Zimarino M, Soccio M, Bilo G, Parati G, Schillaci G, De Caterina R (2007) Awake systolic blood pressure variability correlates with target-organ damage in hypertensive subjects. Hypertension 50(2):325–332

    Article  CAS  PubMed  Google Scholar 

  • Taylor JA, Eckberg DL (1996) Fundamental relations between short-term RR interval and arterial pressure oscillations in humans. Circulation 93(8):1527–1532

    Article  CAS  PubMed  Google Scholar 

  • Toska K, Eriksen M (1993) Respiration-synchronous fluctuations in stroke volume, heart rate and arterial pressure in humans. J Physiol (Lond) 472:501–512

    Article  CAS  Google Scholar 

  • Triedman JK, Saul JP (1994) Blood pressure modulation by central venous pressure and respiration: buffering effects of the heart rate reflexes. Circulation 89:169–179

    Article  CAS  PubMed  Google Scholar 

  • Tzeng YC, Sin PYW, Galletly DC (2009) Human sinus arrhythmia: inconsistencies of a teleological hypothesis. Am J Physiol Heart Circ Physiol 296(1):H65–H70

    Article  CAS  PubMed  Google Scholar 

  • Van Lieshout JJ, Toska K, van Lieshout EJ, Eriksen M, Walloe L, Wesseling KH (2003) Beat-to-beat noninvasive stroke volume from arterial pressure and Doppler ultrasound. Eur J Appl Physiol 90(1–2):131–137

    Article  PubMed  Google Scholar 

  • Yli-Hankala A, Porkkala T, Kaukinen S, Hakkinen V, Jantti V (1991) Respiratory sinus arrhythmia is reversed during positive pressure ventilation. Acta Physiol Scand 141(3):399–407

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the technical assistance from Torun Flatebø and Thomas R. Wood. Maja Elstad is financed by the Norwegian Research Council. The present study also received funding from S. G. Sønneland Foundation, Oslo.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Elstad.

Additional information

Communicated by Keith Phillip George.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elstad, M., Walløe, L., Holme, N.L.A. et al. Respiratory sinus arrhythmia stabilizes mean arterial blood pressure at high-frequency interval in healthy humans. Eur J Appl Physiol 115, 521–530 (2015). https://doi.org/10.1007/s00421-014-3042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3042-3

Keywords

  • Heart rate variability
  • Cardiac stroke volume
  • Spectral analysis
  • Blood pressure variability
  • Intermittent positive pressure ventilation