Skip to main content
Log in

Influence of inter-electrode distance, contraction type, and muscle on the relationship between the sEMG power spectrum and contraction force

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Introduction

Spectral frequencies of the surface electromyogram (sEMG) increase with contraction force, but debate still exists on whether this increase is affected by various methodological and anatomical factors. This study aimed to investigate the influence of inter-electrode distance (IED) and contraction modality (step-wise vs. ramp) on the changes in spectral frequencies with increasing contraction strength for the vastus lateralis (VL) and vastus medialis (VM) muscles.

Methods

Twenty healthy male volunteers were assessed for isometric sEMG activity of the VM and VL, with the knee at 90° flexion. Subjects performed isometric ramp contractions in knee extension (6-s duration) with the force gradually increasing from 0 to 80 % MVC. Also, subjects performed 4-s step-wise isometric contractions at 10, 20, 30, 40, 50, 60, 70, and 80 % MVC. Interference sEMG signals were recorded simultaneously at different IEDs: 10, 20, 30, and 50 mm. The mean (F mean) and median (F median) frequencies and root mean square (RMS) of sEMG signals were calculated.

Results

For all IEDs, contraction modalities, and muscles tested, spectral frequencies increased significantly with increasing level of force up to 50–60 % MVC force. Spectral indexes increased systematically as IED was decreased. The sensitivity of spectral frequencies to changes in contraction force was independent of IED. The behaviour of spectral indexes with increasing contraction force was similar for step-wise and ramp contractions.

Conclusions

In the VL and VM muscles, it is highly unlikely that a particular inter-electrode distance or contraction modality could have prevented the observation of the full extent of the increase in spectral frequencies with increasing force level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

F mean :

Mean frequency

F median :

Median frequency

IED:

Inter-electrode distance

MVC:

Maximal voluntary contraction

RMS:

Root mean square

SD:

Standard deviation

SE:

Standard error of the mean

sEMG:

Surface Electromyography

VL:

Vastus lateralis

VM:

Vastus Medialis

References

  • Alkner BA, Tesch PA, Berg HE (2000) Quadriceps sEMG/force relationship in knee extension and leg press. Med Sci Sports Exerc 32:459–463

    Article  CAS  PubMed  Google Scholar 

  • Bernardi M, Solomonow M, Sanchez JH, Baratta RV, Nguyen G (1995) Motor unit recruitment strategy of knee antagonist muscles in a step-wise, increasing isometric contraction. Eur J Appl Physiol Occup Physiol 70(6):493–501

    Article  CAS  PubMed  Google Scholar 

  • Bilodeau M, Arsenault AB, Gravel D, Bourbonnais D (1990) The influence of an increase in the level of force on the EMG power spectrum of elbow extensors. Eur J Appl Physiol Occup Physiol 61(5–6):461–466

    Article  CAS  PubMed  Google Scholar 

  • Bilodeau M, Arsenault AB, Gravel D, Bourbonnais D (1991) sEMG power spectra of elbow extensors during ramp and step isometric contractions. Eur J Appl Physiol 63:24–28

    Article  CAS  Google Scholar 

  • Bilodeau M, Schindler-Ivens S, Williams DM, Chandran R, Sharma SS (2003) sEMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women. J Electromyogr Kinesiol 13(1):83–92

    Article  CAS  PubMed  Google Scholar 

  • Botter A, Oprandi G, Lanfranco F, Allasia S, Maffiuletti NA, Minetto MA (2011) Atlas of the muscle motor points for the lower limb: implications for electrical stimulation procedures and electrode positioning. Eur J Appl Physiol 111:2461–2471

    Article  PubMed  Google Scholar 

  • Broman H, Bilotto G, De Luca CJ (1985) Myoelectric signal conduction velocity and spectral parameters: influence of force and time. J Appl Physiol 58(5):1428–1437

    CAS  PubMed  Google Scholar 

  • De Luca CJ (1984) Myoelectrical manifestations of localized muscular fatigue in humans. Crit Rev Biomed Eng 11(4):251–279

  • Edgerton VR, Smith JL, Simpson DR (1975) Muscle fibre type populations of human leg muscles. Histochem J 7:259–266

    Article  CAS  PubMed  Google Scholar 

  • Farahmand F, Tahmasbi MN, Amis AA (1998) Lateral forcedisplacement behaviour of the human patella and its variation with knee flexion—a biomechanical study in vitro. J Biomech 31:1147–1152

    Article  CAS  PubMed  Google Scholar 

  • Farina D, Fosci M, Merletti R (2002) Motor unit recruitment strategies investigated by surface sEMG variables. J Appl Physiol 92(1):235–247

    Article  PubMed  Google Scholar 

  • Farina D, Mesin L, Martina S, Merletti R (2004) Comparison of spatial filter selectivity in surface myoelectric signal detection: influence of the volume conductor model. Med Biol Eng Comput 42(1):114–120

    Article  CAS  PubMed  Google Scholar 

  • Gandevia SC, Rothwell JC (1987) Knowledge of motor commands and the recruitment of human motoneurons. Brain 110:1117–1130

    Article  PubMed  Google Scholar 

  • Gerdle B, Wretling ML, Henriksson-Larsen K (1988) Do the fibre-type proportion and the angular velocity influence the mean power frequency of the electromyogram? Acta Physiol Scand 134:341–346

    Article  CAS  PubMed  Google Scholar 

  • Gerdle B, Eriksson NE, Brundin L (1990) The behaviour of the mean power frequency of the surface electromyogram in biceps brachii with increasing force and during fatigue. With special regard to the electrode distance. Electromyogr Clin Neurophysiol 30:483–489

    CAS  PubMed  Google Scholar 

  • Gerdle B, Henriksson-Larsén K, Lorentzon R, Wretling ML (1991) Dependence of the mean power frequency of the electromyogram on muscle force and fibre type. Acta Physiol Scand 142(4):457–465

    Article  CAS  PubMed  Google Scholar 

  • Gerdle B, Karlsson S, Crenshaw AG, Fridén J (1997) The relationships between sEMG and muscle morphology throughout sustained static knee extension at two submaximal force levels. Acta Physiol Scand 160(4):341–351

    Article  CAS  PubMed  Google Scholar 

  • Gerdle B, Karlsson S, Crenshaw AG, Elert J, Fridén J (2000) The influences of muscle fibre proportions and areas upon sEMG during maximal dynamic knee extensions. Eur J Appl Physiol 81(1–2):2–10

    Article  CAS  PubMed  Google Scholar 

  • Gorostiaga EM, Navarro-Amézqueta I, González-Izal M, Malanda A, Granados C, Ibáñez J, Setuain I, Izquierdo M (2012) Blood lactate and sEMG at different knee angles during fatiguing leg press exercise. Eur J Appl Physiol 112(4):1349–1358

    Article  CAS  PubMed  Google Scholar 

  • Gydikov A, Kosarov D (1974) Some features of different motor units in human biceps brachii. Pflug Arch 347(1):75–88

    Article  CAS  Google Scholar 

  • Hagberg M, Ericson BE (1982) Myoelectric power spectrum dependence on muscular contraction level of elbow flexors. Eur J Appl Physiol Occup Physiol 48(2):147–156

    Article  CAS  PubMed  Google Scholar 

  • Hagberg C, Hagberg M (1988) Surface sEMG frequency dependence on force in the masseter and the anterior temporal muscles. Scand J Dent Res 96(5):451–456

    CAS  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SsEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10(5):361–374

    Article  CAS  PubMed  Google Scholar 

  • Hodges PW, Pengel LH, Herbert RD, Gandevia SC (2003) Measurement of muscle contraction with ultrasound imaging. Muscle Nerve 27(6):682–692

    Article  CAS  PubMed  Google Scholar 

  • Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles: an autopsy study. J Neurol Sci 18:111–129

    Article  CAS  PubMed  Google Scholar 

  • Karlsson S, Gerdle B (2001) Mean frequency and signal amplitude of the surface sEMG of the quadriceps muscles increase with increasing torque—a study using the continuous wavelet transform. J Electromyogr Kinesiol 11(2):131–140

    Article  CAS  PubMed  Google Scholar 

  • Linnamo V, Strojnik V, Komi PV (2001) Electromyogram power spectrum and features of the superimposed maximal M-wave during voluntary isometric actions in humans at different activation levels. Eur J Appl Physiol 86(1):28–33

    Article  CAS  PubMed  Google Scholar 

  • Mademli L, Arampatzis A (2005) Behaviour of the human gastrocnemius muscle architecture during submaximal isometric fatigue. Eur J Appl Physiol 94(5–6):611–617

    Article  PubMed  Google Scholar 

  • Merletti R, Hermens HJ (2004) Detection and conditioning of the surface sEMG signal. In: Merletti R, Parker PA (eds) Electromyography: physiology, engineering and applications. NJ Wiley, Hoboken, pp 107–131

  • Mesin L, Joubert M, Hanekom T, Merletti R, Farina D (2005) A finite element model for describing the effect of muscle shortening on surface EMG. IEEE Trans Biomed Eng 53(4):593–600

    Article  Google Scholar 

  • Moritani T, Muro M (1987) Motor unit activity and surface electromyogram power spectrum during increasing force of contraction. Eur J Appl Physiol 56:260–265

    Article  CAS  Google Scholar 

  • Moritani T, Muro M, Kijima A, Gaffney FA, Parsons D (1985) Electromechanical changes during electrically induced and maximal voluntary contractions: surface and intramuscular sEMG responses during sustained maximal voluntary contraction. Exp Neurol 88(3):484–499

    Article  CAS  PubMed  Google Scholar 

  • Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F, Cerretelli P (1996) In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol 496(1):287–297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Norkin CC, Levangie PK (1992) Joint structure and function: a comprehensive analysis, 2nd edn. Davis, Philadelphia, pp 337–378

  • Parker PA, Scott RN (1973) Statistics of the myoelectric signal from monopolar and bypolar electrodes. Med Biol Eng 11(5):591–596

    Article  CAS  PubMed  Google Scholar 

  • Petrofsky JS, Lind AR (1980) Frequency analysis of the surface electromyogram during sustained isometric contractions. Eur J Appl Physiol Occup Physiol 43(2):173–182

    Article  CAS  PubMed  Google Scholar 

  • Pincivero DM, Coelho AJ (2000) Activation linearity and parallelism of the superficial quadriceps muscles across the isometric intensity spectrum. Muscle Nerve 23:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pincivero DM, Campy RM, Salfetnikov Y, Bright A, Coelho AJ (2001) Influence of contraction intensity, muscle, and gender on median frequency of the quadriceps femoris. J Appl Physiol 90(3):804–810

    CAS  PubMed  Google Scholar 

  • Raimondo RA, Ahmad CS, Blankevoort L, April EW, Grelsamer RP, Henry JH (1998) Patellar stabilization: a quantitative evaluation of the vastus medialis obliquus muscle. Orthopedics 21:791–795

    CAS  PubMed  Google Scholar 

  • Rainoldi A, Galardi G, Maderna L, Comi G, Lo Conte L, Merletti R (1999) Repeatability of surface sEMG variables during voluntary isometric contractions of the biceps brachii muscle. J Electromyogr Kinesiol 9:105–119

    Article  CAS  PubMed  Google Scholar 

  • Rogers DR, MacIsaac DT (2013) A comparison of EMG-based muscle fatigue assessments during dynamic contractions. J Electromyogr Kinesiol 23(5):1004–1011

    Article  PubMed  Google Scholar 

  • Salzman A, Torburn L, Perry J (1993) Contribution of rectus femoris and vasti to knee extension: an electromyographic study. Clin Orthop 290:236–243

    PubMed  Google Scholar 

  • Sanchez JH, Solomonow M, Baratta RV, D’Ambrosia R (1993) Control strategies of the elbow antagonist muscle pair during two types of increasing isometric contractions. J Electromyogr Kinesiol 3(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Schulte E, Farina D, Merletti R, Rau G, Disselhorst-Klug C (2004) Influence of muscle fibre shortening on estimates of conduction velocity and spectral frequencies from surface electromyographic signals. Med Biol Eng Comput 42(4):477–486

    Article  CAS  PubMed  Google Scholar 

  • Solomonow M, Baten C, Smit J, Baratta R, Hermens H, D’Ambrosia R, Shoji H (1990) Electromyogram power spectra frequencies associated with motor unit recruitment strategies. J Appl Physiol 68:1177–1185

    CAS  PubMed  Google Scholar 

  • Stulen FB, DeLuca CJ (1981) Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity. IEEE Trans Biomed Eng 28(7):515–523

    Article  CAS  PubMed  Google Scholar 

  • Tenan MS, McMurray RG, Blackburn BT, McGrath M, Leppert K (2011) The relationship between blood potassium, blood lactate, and electromyography signals related to fatigue in a progressive cycling exercise test. J Electromyogr Kinesiol 21(1):25–32

    Article  PubMed  Google Scholar 

  • Travnik L, Pernus F, Erzen I (1995) Histochemical and morphometric characteristics of the normal human vastus medialis longus and vastus medialis obliquus muscles. J Anat 187:403–411

    PubMed Central  PubMed  Google Scholar 

  • Viitasalo JT, Komi PV (1978) Interrelationships of sEMG signal characteristics at different levels of muscle tension during fatigue. Electromyogr Clin Neurophysiol 18:167–178

    CAS  PubMed  Google Scholar 

  • Westbury JR, Shaughnessy TG (1987) Associations between spectral representation of the surface electromyogram and fiber type distribution and size in human masseter muscle. Electromyogr Clin Neurophysiol 27:427–435

    CAS  PubMed  Google Scholar 

  • Wickiewicz TL, Roy RR, Powell PL, Edgerton VR (1983) Muscle architecture of the human lower limb. Clin Orthop 179:275–283

    Article  PubMed  Google Scholar 

  • Zipp P (1978) Effect of electrode parameters on the bandwidth of the surface sEMG power density spectrum. Med Biol Eng Comput 16:537–541

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Rodriguez-Falces.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Falces, J., Neyroud, D. & Place, N. Influence of inter-electrode distance, contraction type, and muscle on the relationship between the sEMG power spectrum and contraction force. Eur J Appl Physiol 115, 627–638 (2015). https://doi.org/10.1007/s00421-014-3041-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3041-4

Keywords

Navigation