Effect of tyrosine ingestion on cognitive and physical performance utilising an intermittent soccer performance test (iSPT) in a warm environment

Abstract

Purpose

The aim of this study was to investigate the effect of tyrosine (TYR) ingestion on cognitive and physical performance during soccer-specific exercise in a warm environment.

Methods

Eight male soccer players completed an individualised 90 min soccer-simulation intermittent soccer performance test (iSPT), on a non-motorised treadmill, on two occasions, within an environmental chamber (25 °C, 40 % RH). Participants ingested tyrosine (TYR; 250 mL sugar free drink plus 150 mg kg body mass−1 TYR) at both 5 h and 1 h pre-exercise or a placebo control (PLA; 250 mL sugar free drink only) in a double-blind, randomised, crossover design. Cognitive performance (vigilance and dual-task) and perceived readiness to invest physical effort (RTIPE) and mental effort (RTIME) were assessed: pre-exercise, half-time, end of half-time and immediately post-exercise. Physical performance was assessed using the total distance covered in both halves of iSPT.

Results

Positive vigilance responses (HIT) were significantly higher (12.6 ± 1.7 vs 11.5 ± 2.4, p = 0.015) with negative responses (MISS) significantly lower (2.4 ± 1.8 vs 3.5 ± 2.4, p = 0.013) in TYR compared to PLA. RTIME scores were significantly higher in the TYR trial when compared to PLA (6.7 ± 1.2 vs 5.9 ± 1.2, p = 0.039). TYR had no significant (p > 0.05) influence on any other cognitive or physical performance measure.

Conclusion

The results show that TYR ingestion is associated with improved vigilance and RTIME when exposed to individualised soccer-specific exercise (iSPT) in a warm environment. This suggests that increasing the availability of TYR may improve cognitive function during exposure to exercise-heat stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

5-HT:

Serotonin

CNS:

Central nervous system

DA:

Dopamine

HR:

Heart rate

iSPT:

Intermittent soccer performance test

LNAA:

Large neutral amino acids

NA:

Noradrenaline

NMT:

Non-motorised treadmill

PLA:

Placebo

RH:

Relative humidity

RPE:

Rating of perceived exertion

RTIME/RTIPE:

Readiness to invest mental/physical effort

TSS:

Thermal sensation

TYR:

Tyrosine

References

  1. Aldous JW, Akubat I, Chrismas BC, Watkins SL, Mauger AR, Midgley AW, Abt G, Taylor L (2014) The reliability and validity of a soccer-specific nonmotorised treadmill simulation (intermittent soccer performance test). J Strength Cond Res 28:1971–1980. doi:10.1519/jsc.0000000000000310

  2. Bailey SP, Davis JM, Ahlborn EN (1993) Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. J Appl Physiol 74(6):3006–3012

    CAS  PubMed  Google Scholar 

  3. Banderet LE, Lieberman HR (1989) Treatment with tyrosine, a neurotransmitter precursor, reduces environmental stress in humans. Brain Res Bull 22(4):759–762. doi:10.1016/0361-9230(89)90096-8

    CAS  PubMed  Article  Google Scholar 

  4. Bangsbo J, Mohr M, Krustrup P (2006) Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci 24(07):665–674. doi:10.1080/02640410500482529

    PubMed  Article  Google Scholar 

  5. Borg GAv (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381. doi:10.1249/00005768-198205000-00012

    CAS  PubMed  Article  Google Scholar 

  6. Cheung SS, Sleivert GG (2004) Multiple triggers for hyperthermic fatigue and exhaustion. Exerc Sport Sci Rev 32(3):100–106

    PubMed  Article  Google Scholar 

  7. Chinevere TD, Sawyer RD, Creer AR, Conlee RK, Parcell AC (2002) Effects of l-tyrosine and carbohydrate ingestion on endurance exercise performance. J Appl Physiol 93(5):1590–1597. doi:10.1097/00005768-200205001-00015

    CAS  PubMed  Google Scholar 

  8. Davis JM, Bailey SP (1997) Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc 29(1):45–57. doi:10.1097/00005768-199701000-00008

    CAS  PubMed  Article  Google Scholar 

  9. Deijen J, Wientjes C, Vullinghs H, Cloin P, Langefeld J (1999) Tyrosine improves cognitive performance and reduces blood pressure in cadets after 1 week of a combat training course. Brain Res Bull 48(2):203–209. doi:10.1016/S0361-9230(98)00163-4

    CAS  PubMed  Article  Google Scholar 

  10. Dietrich A, Sparling PB (2004) Endurance exercise selectively impairs prefrontal-dependent cognition. Brain Cogn 55(3):516–524. doi:10.1016/j.bandc.2004.03.002

    PubMed  Article  Google Scholar 

  11. Duncan MJ, Smith M, Cook K, James RS (2012) The acute effect of a caffeine-containing energy drink on mood state, readiness to invest effort, and resistance exercise to failure. J Strength Cond Res 26(10):2858–2865. doi:10.1519/JSC.0b013e318241e124

    PubMed  Article  Google Scholar 

  12. Fernstrom JD, Faller DV (1978) Neutral amino acids in the brain: changes in response to food ingestion. J Neurochem 30(6):1531–1538

    CAS  PubMed  Article  Google Scholar 

  13. Foley TE, Fleshner M (2008) Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromolecular Med 10(2):67–80. doi:10.1007/s12017-008-8032-3

    CAS  PubMed  Article  Google Scholar 

  14. Galloway S, Maughan RJ (1997) Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc 29(9):1240–1249. doi:10.1097/00005768-199709000-00018

    CAS  PubMed  Article  Google Scholar 

  15. Gaoua N, Racinais S, Grantham J, El Massioui F (2011) Alterations in cognitive performance during passive hyperthermia are task dependent. Int J Hyperthermia 27(1):1–9. doi:10.3109/02656736.2010.516305

    PubMed Central  PubMed  Article  Google Scholar 

  16. Gibson CJ, Wurtman RJ (1978) Physiological control of brain norepinephrine synthesis by brain tyrosine concentration. Life Sci 22(16):1399–1405

    CAS  PubMed  Article  Google Scholar 

  17. Gonzalez-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B (1999) Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 86(3):1032–1039

    CAS  PubMed  Google Scholar 

  18. González-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B (1999) Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 86(3):1032–1039

    PubMed  Google Scholar 

  19. Grafen A, Hails R, Hails R, Hails R (2002) Modern statistics for the life sciences, vol 123. Oxford University Press, Oxford

    Google Scholar 

  20. Hillman AR, Vince RV, Taylor L, McNaughton L, Mitchell N, Siegler J (2011) Exercise-induced dehydration with and without environmental heat stress results in increased oxidative stress. Appl Physiol Nutr Metab 36(5):698–706. doi:10.1139/h11-080

    CAS  PubMed  Article  Google Scholar 

  21. Hillman AR, Turner MC, Peart DJ, Bray JW, Taylor L, McNaughton LR, Siegler JC (2013) A comparison of hyperhydration versus ad libitum fluid intake strategies on measures of oxidative stress, thermoregulation, and performance. Res Sports Med 21(4):305–317. doi:10.1080/15438627.2013.825796

    PubMed  Google Scholar 

  22. Hope A, Woolman P, Gray W, Asbury A, Millar K (1998) A system for psychomotor evaluation; design, implementation and practice effects in volunteers. Anaesthesia 53(6):545–550. doi:10.1046/j.1365-2044.1998.00434.x

    CAS  PubMed  Article  Google Scholar 

  23. Lehnert H, Reinstein DK, Strowbridge BW, Wurtman RJ (1984) Neurochemical and behavioral consequences of acute, uncontrollable stress: effects of dietary tyrosine. Brain Res 303(2):215–223. doi:10.1016/0006-8993(84)91207-1

    CAS  PubMed  Article  Google Scholar 

  24. Lieberman HR, Georgelis JH, Maher TJ, Yeghiayan SK (2005) Tyrosine prevents effects of hyperthermia on behavior and increases norepinephrine. Physiol Behav 84(1):33–38. doi:10.1016/j.physbeh.2004.10.023

    CAS  PubMed  Article  Google Scholar 

  25. Mahoney CR, Castellani J, Kramer FM, Young A, Lieberman HR (2007) Tyrosine supplementation mitigates working memory decrements during cold exposure. Physiol Behav 92(4):575–582. doi:10.1016/j.physbeh.2007.05.003

    CAS  PubMed  Article  Google Scholar 

  26. Maughan R, Shirreffs S, Watson P (2007) Exercise, heat, hydration and the brain. J Am Coll Nutr 26(5 Suppl):604S. doi:10.1080/07315724.2007.10719666

    CAS  PubMed  Article  Google Scholar 

  27. McMorris T, Keen P (1994) Effect of exercise on simple reaction times of recreational athletes. Percept Mot Skills 78(1):123–130

    CAS  PubMed  Article  Google Scholar 

  28. McMorris T, Swain J, Smith M, Corbett J, Delves S, Sale C, Harris RC, Potter J (2006) Heat stress, plasma concentrations of adrenaline, noradrenaline, 5-hydroxytryptamine and cortisol, mood state and cognitive performance. Int J Psychophysiol 61(2):204–215. doi:10.1016/j.ijpsycho.2005.10.002

    PubMed  Article  Google Scholar 

  29. Meeusen R, Smolders I, Sarre S, De Meirleir K, Keizer H, Serneels M, Ebinger G, Michotte Y (1997) Endurance training effects on neurotransmitter release in rat striatum: an in vivo microdialysis study. Acta Physiol Scand 159(4):335–341. doi:10.1046/j.1365-201X.1997.00118.x

    CAS  PubMed  Article  Google Scholar 

  30. Meeusen R, Watson P, Dvorak J (2006a) The brain and fatigue: New opportunities for nutritional interventions? J Sports Sci 24(07):773–782. doi:10.1080/02640410500483022

    PubMed  Article  Google Scholar 

  31. Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF (2006b) Central fatigue: the serotonin hypothesis and beyond. Sports Med 36(10):881–909

    PubMed  Article  Google Scholar 

  32. Mohr M, Nybo L, Grantham J, Racinais S (2012) Physiological responses and physical performance during football in the heat. PLoS one 7(6):e39202. doi:10.1371/journal.pone.0039202

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. Nedelec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G (2013) Recovery in soccer : part ii-recovery strategies. Sports Med 43(1):9–22. doi:10.1007/s40279-012-0002-0

    PubMed  Article  Google Scholar 

  34. Neri DF, Wiegmann D, Stanny RR, Shappell SA, McCardie A, McKay DL (1995) The effects of tyrosine on cognitive performance during extended wakefulness. Aviat Space Environ Med 66:313–319

  35. Newsholme EA, Acworth IN, Blomstrand E (1987) Amino acids, brain neurotransmitters and a functional link between muscle and brain that is important in sustained exercise. In: Benzi G (ed) Advances in Myochemistry. John Libbey Eurotext, London

    Google Scholar 

  36. Nielsen B, Hales J, Strange S, Christensen NJ, Warberg J, Saltin B (1993) Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol 460(1):467–485

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  37. Nybo L, Rasmussen P, Sawka MN (2014) Performance in the heat-physiological factors of importance for hyperthermia-induced fatigue. Compr Physiol 4(2):657–689. doi:10.1002/cphy.c130012

    PubMed  Article  Google Scholar 

  38. O’Brien C, Mahoney C, Tharion WJ, Sils IV, Castellani JW (2007) Dietary tyrosine benefits cognitive and psychomotor performance during body cooling. Physiol Behav 90(2):301–307. doi:10.1016/j.physbeh.2006.09.027

    PubMed  Article  Google Scholar 

  39. Özgünen K, Kurdak S, Maughan R, Zeren C, Korkmaz S, Yazιcι Z, Ersöz G, Shirreffs S, Binnet M, Dvorak J (2010) Effect of hot environmental conditions on physical activity patterns and temperature response of football players. Scand J Med Sci Sports 20(s3):140–147. doi:10.1111/j.1600-0838.2010.01219.x

    PubMed  Article  Google Scholar 

  40. Ramanathan N (1964) A new weighting system for mean surface temperature of the human body. J Appl Physiol 19(3):531–533

    CAS  PubMed  Google Scholar 

  41. Reilly T (1997) Energetics of high-intensity exercise (soccer) with particular reference to fatigue. J Sports Sci 15(3):257–263. doi:10.1080/026404197367263

    CAS  PubMed  Article  Google Scholar 

  42. Roelands B, Meeusen R (2010) Alterations in central fatigue by pharmacological manipulations of neurotransmitters in normal and high ambient temperature. Sports Med 40(3):229–246. doi:10.2165/11533670-000000000-00000

    PubMed  Article  Google Scholar 

  43. Roelands B, Goekint M, Heyman E, Piacentini MF, Watson P, Hasegawa H, Buyse L, Pauwels F, De Schutter G, Meeusen R (2008) Acute norepinephrine reuptake inhibition decreases performance in normal and high ambient temperature. J of appl physiol 105(1):206–212. doi:10.1152/japplphysiol.90509.2008

    CAS  Article  Google Scholar 

  44. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS (2007) American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc 39(2):377–390

    PubMed  Article  Google Scholar 

  45. Simmons SE, Saxby BK, McGlone FP, Jones DA (2008) The effect of passive heating and head cooling on perception, cardiovascular function and cognitive performance in the heat. Eur J Appl Physiol 104(2):271–280. doi:10.1007/s00421-008-0677-y

    PubMed  Article  Google Scholar 

  46. Stølen T, Chamari K, Castagna C, Wisløff U (2005) Physiology of soccer. Sports Med 35(6):501–536

    PubMed  Article  Google Scholar 

  47. Strüder H, Hollmann W, Platen P, Donike M, Gotzmann A, Weber K (1998) Influence of paroxetine, branched-chain amino acids and tyrosine on neuroendocrine system responses and fatigue in humans. Horm Metab Res 30(04):188–194. doi:10.1055/s-2007-978864

    PubMed  Article  Google Scholar 

  48. Sutton EE, Coill M, Deuster PA (2005) Ingestion of tyrosine: effects on endurance, muscle strength, and anaerobic performance. Int J Sport Nutr Exerc Metab 15(2):173

    CAS  PubMed  Google Scholar 

  49. Tumilty L, Davison G, Beckmann M, Thatcher R (2011) Oral tyrosine supplementation improves exercise capacity in the heat. Eur J Appl Physiol 111(12):2941–2950. doi:10.1007/s00421-011-1921-4

    CAS  PubMed  Article  Google Scholar 

  50. Tumilty L, Davison G, Beckmann M, Thatcher R (2013) Acute oral administration of a tyrosine and phenylalanine-free amino acid mixture reduces exercise capacity in the heat. Eur J Appl Physiol 113:1511–1522. doi:10.1007/s00421-012-2577-4

  51. Tumilty L, Davison G, Beckmann M, Thatcher R (2014) Failure of oral tyrosine supplementation to improve exercise performance in the heat. Med Sci Sports Exerc 46:1417–1425. doi:10.1249/MSS.0000000000000243

  52. Watson P (2008) Nutrition, the brain and prolonged exercise. Eur J Sport Sci 8(2):87–96. doi:10.1080/17461390801919086

    Article  Google Scholar 

  53. Watson P, Enever S, Page A, Stockwell J, Maughan RJ (2012) Tyrosine supplementation does not influence the capacity to perform prolonged exercise in a warm environment. Int J Sport Nutr Exerc Metab 22(5):363

    CAS  Google Scholar 

  54. Weston M, Drust B, Gregson W (2011) Intensities of exercise during match-play in FA Premier League referees and players. J Sports Sci 29(5):527–532. doi:10.1080/02640414.2010.543914

    PubMed  Article  Google Scholar 

  55. Wurtman RJ, Hefti F, Melamed E (1980) Precursor control of neurotransmitter synthesis. Pharmacol Rev 32(4):315–335. doi:10.1016/0006-2952(76)90400-7

    CAS  PubMed  Google Scholar 

  56. Yiannakos A, Armatas V (2006) Evaluation of the goal scoring patterns in European Championship in Portugal 2004. Int J Perform Anal Sport 6(1):178–188

    Google Scholar 

  57. Young AJ, Sawka MN, Epstein Y, DeCristofano B, Pandolf KB (1987) Cooling different body surfaces during upper and lower body exercise. J Appl Physiol 63(3):1218–1223

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lee Taylor.

Additional information

Communicated by Peter Krustrup.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coull, N.A., Watkins, S.L., Aldous, J.W.F. et al. Effect of tyrosine ingestion on cognitive and physical performance utilising an intermittent soccer performance test (iSPT) in a warm environment. Eur J Appl Physiol 115, 373–386 (2015). https://doi.org/10.1007/s00421-014-3022-7

Download citation

Keywords

  • Central fatigue
  • Tyrosine
  • Cognitive function
  • Intermittent exercise
  • Heat