European Journal of Applied Physiology

, Volume 115, Issue 2, pp 373–386 | Cite as

Effect of tyrosine ingestion on cognitive and physical performance utilising an intermittent soccer performance test (iSPT) in a warm environment

  • Nicole A. Coull
  • Samuel L. Watkins
  • Jeffrey W. F. Aldous
  • Lee K. Warren
  • Bryna C. R. Chrismas
  • Benjamin Dascombe
  • Alexis R. Mauger
  • Grant Abt
  • Lee TaylorEmail author
Original Article



The aim of this study was to investigate the effect of tyrosine (TYR) ingestion on cognitive and physical performance during soccer-specific exercise in a warm environment.


Eight male soccer players completed an individualised 90 min soccer-simulation intermittent soccer performance test (iSPT), on a non-motorised treadmill, on two occasions, within an environmental chamber (25 °C, 40 % RH). Participants ingested tyrosine (TYR; 250 mL sugar free drink plus 150 mg kg body mass−1 TYR) at both 5 h and 1 h pre-exercise or a placebo control (PLA; 250 mL sugar free drink only) in a double-blind, randomised, crossover design. Cognitive performance (vigilance and dual-task) and perceived readiness to invest physical effort (RTIPE) and mental effort (RTIME) were assessed: pre-exercise, half-time, end of half-time and immediately post-exercise. Physical performance was assessed using the total distance covered in both halves of iSPT.


Positive vigilance responses (HIT) were significantly higher (12.6 ± 1.7 vs 11.5 ± 2.4, p = 0.015) with negative responses (MISS) significantly lower (2.4 ± 1.8 vs 3.5 ± 2.4, p = 0.013) in TYR compared to PLA. RTIME scores were significantly higher in the TYR trial when compared to PLA (6.7 ± 1.2 vs 5.9 ± 1.2, p = 0.039). TYR had no significant (p > 0.05) influence on any other cognitive or physical performance measure.


The results show that TYR ingestion is associated with improved vigilance and RTIME when exposed to individualised soccer-specific exercise (iSPT) in a warm environment. This suggests that increasing the availability of TYR may improve cognitive function during exposure to exercise-heat stress.


Central fatigue Tyrosine Cognitive function Intermittent exercise Heat 





Central nervous system




Heart rate


Intermittent soccer performance test


Large neutral amino acids




Non-motorised treadmill




Relative humidity


Rating of perceived exertion


Readiness to invest mental/physical effort


Thermal sensation




Conflict of interest



  1. Aldous JW, Akubat I, Chrismas BC, Watkins SL, Mauger AR, Midgley AW, Abt G, Taylor L (2014) The reliability and validity of a soccer-specific nonmotorised treadmill simulation (intermittent soccer performance test). J Strength Cond Res 28:1971–1980. doi: 10.1519/jsc.0000000000000310
  2. Bailey SP, Davis JM, Ahlborn EN (1993) Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. J Appl Physiol 74(6):3006–3012PubMedGoogle Scholar
  3. Banderet LE, Lieberman HR (1989) Treatment with tyrosine, a neurotransmitter precursor, reduces environmental stress in humans. Brain Res Bull 22(4):759–762. doi: 10.1016/0361-9230(89)90096-8 PubMedCrossRefGoogle Scholar
  4. Bangsbo J, Mohr M, Krustrup P (2006) Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci 24(07):665–674. doi: 10.1080/02640410500482529 PubMedCrossRefGoogle Scholar
  5. Borg GAv (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381. doi: 10.1249/00005768-198205000-00012 PubMedCrossRefGoogle Scholar
  6. Cheung SS, Sleivert GG (2004) Multiple triggers for hyperthermic fatigue and exhaustion. Exerc Sport Sci Rev 32(3):100–106PubMedCrossRefGoogle Scholar
  7. Chinevere TD, Sawyer RD, Creer AR, Conlee RK, Parcell AC (2002) Effects of l-tyrosine and carbohydrate ingestion on endurance exercise performance. J Appl Physiol 93(5):1590–1597. doi: 10.1097/00005768-200205001-00015 PubMedGoogle Scholar
  8. Davis JM, Bailey SP (1997) Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc 29(1):45–57. doi: 10.1097/00005768-199701000-00008 PubMedCrossRefGoogle Scholar
  9. Deijen J, Wientjes C, Vullinghs H, Cloin P, Langefeld J (1999) Tyrosine improves cognitive performance and reduces blood pressure in cadets after 1 week of a combat training course. Brain Res Bull 48(2):203–209. doi: 10.1016/S0361-9230(98)00163-4 PubMedCrossRefGoogle Scholar
  10. Dietrich A, Sparling PB (2004) Endurance exercise selectively impairs prefrontal-dependent cognition. Brain Cogn 55(3):516–524. doi: 10.1016/j.bandc.2004.03.002 PubMedCrossRefGoogle Scholar
  11. Duncan MJ, Smith M, Cook K, James RS (2012) The acute effect of a caffeine-containing energy drink on mood state, readiness to invest effort, and resistance exercise to failure. J Strength Cond Res 26(10):2858–2865. doi: 10.1519/JSC.0b013e318241e124 PubMedCrossRefGoogle Scholar
  12. Fernstrom JD, Faller DV (1978) Neutral amino acids in the brain: changes in response to food ingestion. J Neurochem 30(6):1531–1538PubMedCrossRefGoogle Scholar
  13. Foley TE, Fleshner M (2008) Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromolecular Med 10(2):67–80. doi: 10.1007/s12017-008-8032-3 PubMedCrossRefGoogle Scholar
  14. Galloway S, Maughan RJ (1997) Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc 29(9):1240–1249. doi: 10.1097/00005768-199709000-00018 PubMedCrossRefGoogle Scholar
  15. Gaoua N, Racinais S, Grantham J, El Massioui F (2011) Alterations in cognitive performance during passive hyperthermia are task dependent. Int J Hyperthermia 27(1):1–9. doi: 10.3109/02656736.2010.516305 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Gibson CJ, Wurtman RJ (1978) Physiological control of brain norepinephrine synthesis by brain tyrosine concentration. Life Sci 22(16):1399–1405PubMedCrossRefGoogle Scholar
  17. Gonzalez-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B (1999) Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 86(3):1032–1039PubMedGoogle Scholar
  18. González-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B (1999) Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 86(3):1032–1039PubMedGoogle Scholar
  19. Grafen A, Hails R, Hails R, Hails R (2002) Modern statistics for the life sciences, vol 123. Oxford University Press, OxfordGoogle Scholar
  20. Hillman AR, Vince RV, Taylor L, McNaughton L, Mitchell N, Siegler J (2011) Exercise-induced dehydration with and without environmental heat stress results in increased oxidative stress. Appl Physiol Nutr Metab 36(5):698–706. doi: 10.1139/h11-080 PubMedCrossRefGoogle Scholar
  21. Hillman AR, Turner MC, Peart DJ, Bray JW, Taylor L, McNaughton LR, Siegler JC (2013) A comparison of hyperhydration versus ad libitum fluid intake strategies on measures of oxidative stress, thermoregulation, and performance. Res Sports Med 21(4):305–317. doi: 10.1080/15438627.2013.825796 PubMedGoogle Scholar
  22. Hope A, Woolman P, Gray W, Asbury A, Millar K (1998) A system for psychomotor evaluation; design, implementation and practice effects in volunteers. Anaesthesia 53(6):545–550. doi: 10.1046/j.1365-2044.1998.00434.x PubMedCrossRefGoogle Scholar
  23. Lehnert H, Reinstein DK, Strowbridge BW, Wurtman RJ (1984) Neurochemical and behavioral consequences of acute, uncontrollable stress: effects of dietary tyrosine. Brain Res 303(2):215–223. doi: 10.1016/0006-8993(84)91207-1 PubMedCrossRefGoogle Scholar
  24. Lieberman HR, Georgelis JH, Maher TJ, Yeghiayan SK (2005) Tyrosine prevents effects of hyperthermia on behavior and increases norepinephrine. Physiol Behav 84(1):33–38. doi: 10.1016/j.physbeh.2004.10.023 PubMedCrossRefGoogle Scholar
  25. Mahoney CR, Castellani J, Kramer FM, Young A, Lieberman HR (2007) Tyrosine supplementation mitigates working memory decrements during cold exposure. Physiol Behav 92(4):575–582. doi: 10.1016/j.physbeh.2007.05.003 PubMedCrossRefGoogle Scholar
  26. Maughan R, Shirreffs S, Watson P (2007) Exercise, heat, hydration and the brain. J Am Coll Nutr 26(5 Suppl):604S. doi: 10.1080/07315724.2007.10719666 PubMedCrossRefGoogle Scholar
  27. McMorris T, Keen P (1994) Effect of exercise on simple reaction times of recreational athletes. Percept Mot Skills 78(1):123–130PubMedCrossRefGoogle Scholar
  28. McMorris T, Swain J, Smith M, Corbett J, Delves S, Sale C, Harris RC, Potter J (2006) Heat stress, plasma concentrations of adrenaline, noradrenaline, 5-hydroxytryptamine and cortisol, mood state and cognitive performance. Int J Psychophysiol 61(2):204–215. doi: 10.1016/j.ijpsycho.2005.10.002 PubMedCrossRefGoogle Scholar
  29. Meeusen R, Smolders I, Sarre S, De Meirleir K, Keizer H, Serneels M, Ebinger G, Michotte Y (1997) Endurance training effects on neurotransmitter release in rat striatum: an in vivo microdialysis study. Acta Physiol Scand 159(4):335–341. doi: 10.1046/j.1365-201X.1997.00118.x PubMedCrossRefGoogle Scholar
  30. Meeusen R, Watson P, Dvorak J (2006a) The brain and fatigue: New opportunities for nutritional interventions? J Sports Sci 24(07):773–782. doi: 10.1080/02640410500483022 PubMedCrossRefGoogle Scholar
  31. Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF (2006b) Central fatigue: the serotonin hypothesis and beyond. Sports Med 36(10):881–909PubMedCrossRefGoogle Scholar
  32. Mohr M, Nybo L, Grantham J, Racinais S (2012) Physiological responses and physical performance during football in the heat. PLoS one 7(6):e39202. doi: 10.1371/journal.pone.0039202 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Nedelec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G (2013) Recovery in soccer : part ii-recovery strategies. Sports Med 43(1):9–22. doi: 10.1007/s40279-012-0002-0 PubMedCrossRefGoogle Scholar
  34. Neri DF, Wiegmann D, Stanny RR, Shappell SA, McCardie A, McKay DL (1995) The effects of tyrosine on cognitive performance during extended wakefulness. Aviat Space Environ Med 66:313–319Google Scholar
  35. Newsholme EA, Acworth IN, Blomstrand E (1987) Amino acids, brain neurotransmitters and a functional link between muscle and brain that is important in sustained exercise. In: Benzi G (ed) Advances in Myochemistry. John Libbey Eurotext, LondonGoogle Scholar
  36. Nielsen B, Hales J, Strange S, Christensen NJ, Warberg J, Saltin B (1993) Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol 460(1):467–485PubMedCentralPubMedCrossRefGoogle Scholar
  37. Nybo L, Rasmussen P, Sawka MN (2014) Performance in the heat-physiological factors of importance for hyperthermia-induced fatigue. Compr Physiol 4(2):657–689. doi: 10.1002/cphy.c130012 PubMedCrossRefGoogle Scholar
  38. O’Brien C, Mahoney C, Tharion WJ, Sils IV, Castellani JW (2007) Dietary tyrosine benefits cognitive and psychomotor performance during body cooling. Physiol Behav 90(2):301–307. doi: 10.1016/j.physbeh.2006.09.027 PubMedCrossRefGoogle Scholar
  39. Özgünen K, Kurdak S, Maughan R, Zeren C, Korkmaz S, Yazιcι Z, Ersöz G, Shirreffs S, Binnet M, Dvorak J (2010) Effect of hot environmental conditions on physical activity patterns and temperature response of football players. Scand J Med Sci Sports 20(s3):140–147. doi: 10.1111/j.1600-0838.2010.01219.x PubMedCrossRefGoogle Scholar
  40. Ramanathan N (1964) A new weighting system for mean surface temperature of the human body. J Appl Physiol 19(3):531–533PubMedGoogle Scholar
  41. Reilly T (1997) Energetics of high-intensity exercise (soccer) with particular reference to fatigue. J Sports Sci 15(3):257–263. doi: 10.1080/026404197367263 PubMedCrossRefGoogle Scholar
  42. Roelands B, Meeusen R (2010) Alterations in central fatigue by pharmacological manipulations of neurotransmitters in normal and high ambient temperature. Sports Med 40(3):229–246. doi: 10.2165/11533670-000000000-00000 PubMedCrossRefGoogle Scholar
  43. Roelands B, Goekint M, Heyman E, Piacentini MF, Watson P, Hasegawa H, Buyse L, Pauwels F, De Schutter G, Meeusen R (2008) Acute norepinephrine reuptake inhibition decreases performance in normal and high ambient temperature. J of appl physiol 105(1):206–212. doi: 10.1152/japplphysiol.90509.2008 CrossRefGoogle Scholar
  44. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS (2007) American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc 39(2):377–390PubMedCrossRefGoogle Scholar
  45. Simmons SE, Saxby BK, McGlone FP, Jones DA (2008) The effect of passive heating and head cooling on perception, cardiovascular function and cognitive performance in the heat. Eur J Appl Physiol 104(2):271–280. doi: 10.1007/s00421-008-0677-y PubMedCrossRefGoogle Scholar
  46. Stølen T, Chamari K, Castagna C, Wisløff U (2005) Physiology of soccer. Sports Med 35(6):501–536PubMedCrossRefGoogle Scholar
  47. Strüder H, Hollmann W, Platen P, Donike M, Gotzmann A, Weber K (1998) Influence of paroxetine, branched-chain amino acids and tyrosine on neuroendocrine system responses and fatigue in humans. Horm Metab Res 30(04):188–194. doi: 10.1055/s-2007-978864 PubMedCrossRefGoogle Scholar
  48. Sutton EE, Coill M, Deuster PA (2005) Ingestion of tyrosine: effects on endurance, muscle strength, and anaerobic performance. Int J Sport Nutr Exerc Metab 15(2):173PubMedGoogle Scholar
  49. Tumilty L, Davison G, Beckmann M, Thatcher R (2011) Oral tyrosine supplementation improves exercise capacity in the heat. Eur J Appl Physiol 111(12):2941–2950. doi: 10.1007/s00421-011-1921-4 PubMedCrossRefGoogle Scholar
  50. Tumilty L, Davison G, Beckmann M, Thatcher R (2013) Acute oral administration of a tyrosine and phenylalanine-free amino acid mixture reduces exercise capacity in the heat. Eur J Appl Physiol 113:1511–1522. doi: 10.1007/s00421-012-2577-4
  51. Tumilty L, Davison G, Beckmann M, Thatcher R (2014) Failure of oral tyrosine supplementation to improve exercise performance in the heat. Med Sci Sports Exerc 46:1417–1425. doi: 10.1249/MSS.0000000000000243
  52. Watson P (2008) Nutrition, the brain and prolonged exercise. Eur J Sport Sci 8(2):87–96. doi: 10.1080/17461390801919086 CrossRefGoogle Scholar
  53. Watson P, Enever S, Page A, Stockwell J, Maughan RJ (2012) Tyrosine supplementation does not influence the capacity to perform prolonged exercise in a warm environment. Int J Sport Nutr Exerc Metab 22(5):363Google Scholar
  54. Weston M, Drust B, Gregson W (2011) Intensities of exercise during match-play in FA Premier League referees and players. J Sports Sci 29(5):527–532. doi: 10.1080/02640414.2010.543914 PubMedCrossRefGoogle Scholar
  55. Wurtman RJ, Hefti F, Melamed E (1980) Precursor control of neurotransmitter synthesis. Pharmacol Rev 32(4):315–335. doi: 10.1016/0006-2952(76)90400-7 PubMedGoogle Scholar
  56. Yiannakos A, Armatas V (2006) Evaluation of the goal scoring patterns in European Championship in Portugal 2004. Int J Perform Anal Sport 6(1):178–188Google Scholar
  57. Young AJ, Sawka MN, Epstein Y, DeCristofano B, Pandolf KB (1987) Cooling different body surfaces during upper and lower body exercise. J Appl Physiol 63(3):1218–1223PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nicole A. Coull
    • 1
  • Samuel L. Watkins
    • 1
  • Jeffrey W. F. Aldous
    • 1
  • Lee K. Warren
    • 1
  • Bryna C. R. Chrismas
    • 1
  • Benjamin Dascombe
    • 2
  • Alexis R. Mauger
    • 3
  • Grant Abt
    • 4
  • Lee Taylor
    • 1
    Email author
  1. 1.Department of Sport Science and Physical Activity, Institute for Sport and Physical Activity Research (ISPAR)University of BedfordshireBedfordUK
  2. 2.Applied Sports Science and Exercise Testing (ASSET) Laboratory, Faculty of Science and ITUniversity of NewcastleCallaghanAustralia
  3. 3.Endurance Research Group, School of Sport and Exercise SciencesUniversity of KentChatham MaritimeUK
  4. 4.Department of Sport, Health and Exercise ScienceUniversity of HullHullUK

Personalised recommendations