Post activation potentiation can be induced without impairing tendon stiffness

Abstract

Purpose

This study aimed to investigate conditioning effects from a single 6-s plantar flexion maximal voluntary isometric contraction (MVIC) on Achilles tendon stiffness (ATS) and twitch properties of the triceps surae in athletes.

Methods

Peak twitch (PT), rate of torque development (RTD), rising time (RT10–90%) and half relaxation time (HRT) were measured from supramaximal twitches evoked in the plantar flexors of 10 highly trained athletes. Twitches were evoked before and at seven occasions during 10 min of recovery after a 6-s MVIC. In a second session, but at identical post-conditioning time points, ATS was measured at 30 and 50 % of MVIC (ATS30% and ATS50%) using an ultrasonography-based method.

Results

The magnitude and duration of the conditioning MVIC on muscle contractile properties were in accordance with previous literature on post activation potentiation (PAP), i.e., high potentiation immediately after MVIC, with significant PAP for up to 3 min after the MVIC. While PT and RTD were significantly enhanced (by 60.6 ± 19.3 and 90.1 ± 22.5 %, respectively) and RT10–90% and HRT were reduced (by 10.1 ± 7.7 and 18.7 ± 5.6 %, respectively) after conditioning, ATS remained unaffected.

Conclusions

Previous studies have suggested that changes in stiffness after conditioning may interfere with the enhancements in twitch contractile properties. The present study, however, provided some evidence that twitch enhancements after a standard PAP can be induced without changes in ATS. This result may suggest that athletes can use this protocol to enhance muscle contractile properties without performance deficits due to changes in ATS.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

ANOVA:

Analysis of variance

ATS:

Achilles tendon stiffness

ATS30% :

Achilles tendon stiffness at 30 % of maximal voluntary isometric contraction

ATS50% :

Achilles tendon stiffness at 50 % of maximal voluntary isometric contraction

CT:

Control trials

EMG:

Electromyography

Fig:

Figure

Hz:

Hertz

HRT:

Half relaxation time

ICC2,k :

Intra-class correlation coefficients

MVIC:

Maximal voluntary isometric contraction

MG:

Medial gastrocnemius

MHz:

Mega hertz

M-wave:

Compound muscle action potential

MTJ:

Muscle–tendinous junction

Nm:

Newton meter

Nm/mm:

Newton meter per millimeter

PT:

Peak torque

PAP:

Post activation potentiation

RT10–90 :

Rising time

RMSEMG :

Root mean square

RTD:

Rate of torque development

s:

Seconds

SOL:

Soleus

TTP:

Time to peak

TA:

Tibialis anterior

References

  1. Baudry S, Duchateau J (2004) Postactivation potentiation in human muscle is not related to the type of maximal conditioning contraction. Muscle Nerve 30(3):328–336. doi:10.1002/mus.20101

    PubMed  Article  Google Scholar 

  2. Baudry S, Duchateau J (2007) Postactivation potentiation in a human muscle: effect on the rate of torque development of tetanic and voluntary isometric contractions. J Appl Physiol 102(4):1394–1401. doi:10.1152/japplphysiol.01254.2006

    PubMed  Article  Google Scholar 

  3. Baudry S, Klass M, Duchateau J (2005) Postactivation potentiation influences differently the nonlinear summation of contractions in young and elderly adults. J Appl Physiol 98(4):1243–1250. doi:10.1152/japplphysiol.00735.2004

    PubMed  Article  Google Scholar 

  4. Behm DG, Button DC, Barbour G, Butt JC, Young WB (2004) Conflicting effects of fatigue and potentiation on voluntary force. J Strength Cond Res 18(2):365–372. doi:10.1519/r-12982.1

    PubMed  Google Scholar 

  5. Belanger AY, McComas AJ, Elder GB (1983) Physiological properties of two antagonist human muscle groups. Eur J Appl Physiol Occup Physiol 51(3):381–393

    PubMed  Article  CAS  Google Scholar 

  6. Bojsen-Møller J, Magnusson SP, Rasmussen LR, Kjaer M, Aagaard P (2005) Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol 99(3):986–994. doi:10.1152/japplphysiol.01305.2004

    PubMed  Article  Google Scholar 

  7. Butler DL, Grood ES, Noyes FR, Zernicke RF (1978) Biomechanics of ligaments and tendons. Exerc Sport Sci Rev 6:125–181

    PubMed  CAS  Google Scholar 

  8. Chiu LZF, Fry AC, Weiss LW, Schilling BK, Brown LE, Smith SL (2003) Postactivation potentiation response in athletic and recreationally trained individuals. J Strength Cond Res 17(4):671–677

    PubMed  Google Scholar 

  9. Davies CT, Mecrow IK, White MJ (1982) Contractile properties of the human triceps surae with some observations on the effects of temperature and exercise. Eur J Appl Physiol 49(2):255–269

    Article  CAS  Google Scholar 

  10. Gago P, Marques MC, Marinho DA, Ekblom MM (2014) Passive muscle length changes affect twitch potentiation in power athletes. Med Sci Sports Exerc. doi:10.1249/mss.0000000000000245

    PubMed  Google Scholar 

  11. Garner SH, Hicks AL, McComas AJ (1989) Prolongation of twitch potentiating mechanism throughout muscle fatigue and recovery. Exp Neurol 103(3):277–281. doi:10.1016/0014-4886(89)90051-4

    PubMed  Article  CAS  Google Scholar 

  12. Hamada TS, Digby Macdougall JD (2000) Postactivation potentiation in endurance-trained male athletes. Med Sci Sports Exerc 32(3):403–411

    PubMed  Article  CAS  Google Scholar 

  13. Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA (2003) Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta Physiol Scand 178(2):165–173. doi:10.1046/j.1365-201X.2003.01121.x

    PubMed  Article  CAS  Google Scholar 

  14. Haraldsson BT, Aagaard P, Krogsgaard M, Alkjaer T, Kjaer M, Magnusson SP (2005) Region-specific mechanical properties of the human patella tendon. J Appl Physiol 98(3):1006–1012. doi:10.1152/japplphysiol.00482.2004

    PubMed  Article  CAS  Google Scholar 

  15. Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond Ser B Biol Sci 126(843):136–195. doi:10.1098/rspb.1938.0050

    Article  Google Scholar 

  16. Kay AD, Blazevich AJ (2009a) Isometric contractions reduce plantar flexor moment, Achilles tendon stiffness, and neuromuscular activity but remove the subsequent effects of stretch. J Appl Physiol 107(4):1181–1189. doi:10.1152/japplphysiol.00281.2009

    PubMed  Article  Google Scholar 

  17. Kay AD, Blazevich AJ (2009b) Moderate-duration static stretch reduces active and passive plantar flexor moment but not Achilles tendon stiffness or active muscle length. J Appl Physiol 106(4):1249–1256. doi:10.1152/japplphysiol.91476.2008

    PubMed  Article  Google Scholar 

  18. Kay AD, Blazevich AJ (2010) Concentric muscle contractions before static stretching minimize, but do not remove, stretch-induced force deficits. J Appl Physiol 108(3):637–645. doi:10.1152/japplphysiol.01135.2009

    PubMed  Article  Google Scholar 

  19. Kubo K, Kawakami Y, Fukunaga T (1999) Influence of elastic properties of tendon structures on jump performance in humans. J Appl Physiol 87(6):2090–2096

    PubMed  CAS  Google Scholar 

  20. Kubo K, Kanehisa H, Kawakami Y, Fukunaga T (2001) Influence of static stretching on viscoelastic properties of human tendon structures in vivo. J Appl Physiol 90(2):520–527

    PubMed  CAS  Google Scholar 

  21. Kubo K, Kanehisa H, Fukunaga T (2002) Effects of transient muscle contractions and stretching on the tendon structures in vivo. Acta Physiol Scand 175(2):157–164. doi:10.1046/j.1365-201X.2002.00976.x

    PubMed  Article  CAS  Google Scholar 

  22. Kubo K, Kanehisa H, Fukunaga T (2005) Effects of cold and hot water immersion on the mechanical properties of human muscle and tendon in vivo. Clin Biomech 20(3):291–300. doi:10.1016/j.clinbiomech.2004.11.005

    Article  Google Scholar 

  23. Kubo K, Morimoto M, Komuro T, Tsunoda N, Kanehisa H, Fukunaga T (2007) Influences of tendon stiffness, joint stiffness, and electromyographic activity on jump performances using single joint. Eur J Appl Physiol 99(3):235–243. doi:10.1007/s00421-006-0338-y

    PubMed  Article  Google Scholar 

  24. Kufel TJ, Pineda LA, Mador MJ (2002) Comparison of potentiated and unpotentiated twitches as an index of muscle fatigue. Muscle Nerve 25(3):438–444. doi:10.1002/mus.10047

    PubMed  Article  Google Scholar 

  25. Mademli L, Arampatzis A, Walsh M (2006) Effect of muscle fatigue on the compliance of the gastrocnemius medialis tendon and aponeurosis. J Biomech 39(3):426. doi:10.1016/j.jbiomech.2004.12.016

    PubMed  Article  Google Scholar 

  26. Maganaris CN (2003) Tendon conditioning: artefact or property? Proc Biol sci R Soc 270(Suppl 1):S39–S42. doi:10.1098/rsbl.2003.0004

    Article  Google Scholar 

  27. Miyamoto N, Kanehisa H, Fukunaga T, Kawakami Y (2011) Effect of Postactivation Potentiation on the Maximal Voluntary Isokinetic Concentric Torque in Humans. J Strength Cond Res 25(1):186–192. doi:10.1519/JSC.1510b1013e3181b1562c1511d

    PubMed  Article  Google Scholar 

  28. Muramatsu T, Muraoka T, Takeshita D, Kawakami Y, Hirano Y, Fukunaga T (2001) Mechanical properties of tendon and aponeurosis of human gastrocnemius muscle in vivo. J Appl Physiol 90(5):1671–1678

    PubMed  CAS  Google Scholar 

  29. Obst SJ, Barrett RS, Newsham-West R (2013) Immediate effect of exercise on achilles tendon properties: systematic review. Med Sci Sports Exerc 45(8):1534–1544. doi:10.1249/MSS.0b013e318289d821

    PubMed  Article  Google Scholar 

  30. Onambélé GL, Narici MV, Rejc E, Maganaris CN (2007) Contribution of calf muscle–tendon properties to single-leg stance ability in the absence of visual feedback in relation to ageing. Gait Posture 26(3):343–348

    PubMed  Article  Google Scholar 

  31. Park DY, Rubenson J, Carr A, Mattson J, Besier T, Chou LB (2011) Influence of stretching and warm-up on Achilles tendon material properties. Foot Ankle Int 32(4):407–413. doi:10.3113/fai.2011.0407

    PubMed  Article  Google Scholar 

  32. Pearson SJ, Onambele GL (2012) Computation methods affect the reported values of in vivo human tendon stiffness. J Mech Behav Biomed Mater 5(1):291–297. doi:10.1016/j.jmbbm.2011.08.008

    PubMed  Article  Google Scholar 

  33. Peltonen J, Cronin NJ, Avela J, Finni T (2010) In vivo mechanical response of human Achilles tendon to a single bout of hopping exercise. J Exp Biol 213(8):1259–1265. doi:10.1242/jeb.033514

    PubMed  Article  Google Scholar 

  34. Proske U, Morgan DL (1987) Tendon stiffness: methods of measurement and significance for the control of movement. A review. J Biomech 20(1):75–82. doi:10.1016/0021-9290(87)90269-7

    PubMed  Article  CAS  Google Scholar 

  35. Proske U, Morgan DL (1999) Do cross-bridges contribute to the tension during stretch of passive muscle? J Muscle Res Cell Motil 20(5–6):433–442

    PubMed  Article  CAS  Google Scholar 

  36. Ritz-Gold CJ, Cooke R, Blumenthal DK, Stull JT (1980a) Light chain phosphorylation alters the conformation of skeletal muscle myosin. Biochem Biophys Res Commun 93(1):209–214. doi:10.1016/S0006-291X(80)80267-1

    PubMed  Article  CAS  Google Scholar 

  37. Ritz-Gold CJ, Cooke R, Blumenthal DK, Stull JT (1980) Light chain phosphorylation alters the conformation of skeletal muscle myosin. Biochem Biophys Res Commun 93 (1):209-214. doi:10.1016/S0006-291X(80)80267-1

  38. Smith JC, Fry AC (2007) Effects of a ten-second maximum voluntary contraction on regulatory myosin light-chain phosphorylation and dynamic performance measures. J Strength Cond Res 21(1):73–76

    PubMed  Article  Google Scholar 

  39. Szczesna D, Zhao J, Jones M, Zhi G, Stull J, Potter JD (2002) Phosphorylation of the regulatory light chains of myosin affects Ca2+sensitivity of skeletal muscle contraction. J Appl Physiol 92(4):1661–1670. doi:10.1152/japplphysiol.00858.2001

    PubMed  CAS  Google Scholar 

  40. Tardioli A, Malliaras P, Maffulli N (2012) Immediate and short-term effects of exercise on tendon structure: biochemical, biomechanical and imaging responses. Br Med Bull. doi:10.1093/bmb/ldr052

    PubMed  Google Scholar 

  41. Tillin NA, Bishop D (2009) Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med 39 (2):147-166. doi:10.2165/00007256-200939020-00004

  42. Vandervoort AA, Quinlan J, McComas AJ (1983) Twitch potentiation after voluntary contraction. Exp Neurol 81(1):141–152. doi:10.1016/0014-4886(83)90163-2

    PubMed  Article  CAS  Google Scholar 

  43. Wang XT, de Ruister MR, McN Alexander R, Ker RF (1991) The effect of temperature on the tensile stiffness of mammalian tail tendons. J Zool 223(3):491–497. doi:10.1111/j.1469-7998.1991.tb04779.x

    Article  Google Scholar 

  44. Zhi G, Ryder JW, Huang J, Ding P, Chen Y, Zhao Y, Kamm KE, Stull JT (2005) Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction. Proc Natl Acad Sci USA 102(48):17519–17524. doi:10.1073/pnas.0506846102

    PubMed  Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the Swedish National Centre for Research in Sports (CIF) and Fundação para a Ciência e Tecnologia (FCT). Paulo Gago wishes to thank the Fundação para a Ciência e Tecnologia (FCT), Portugal for the Ph.D. grant SFRH/BD/79184/2011. We acknowledge Paul Sandamas´ contribution in developing the algorithm used for calculating Achilles tendon length.

Conflicts of interest

No conflicts of interests, financial or otherwise, are declared by the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria M. Ekblom.

Additional information

Communicated by Olivier Seynnes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gago, P., Arndt, A., Tarassova, O. et al. Post activation potentiation can be induced without impairing tendon stiffness. Eur J Appl Physiol 114, 2299–2308 (2014). https://doi.org/10.1007/s00421-014-2945-3

Download citation

Keywords

  • Potentiation
  • Twitch
  • Tendon
  • Stiffness
  • Isometric