Skip to main content
Log in

Hands and feet: physiological insulators, radiators and evaporators

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purpose of this review is to describe the unique anatomical and physiological features of the hands and feet that support heat conservation and dissipation, and in so doing, highlight the importance of these appendages in human thermoregulation. For instance, the surface area to mass ratio of each hand is 4–5 times greater than that of the body, whilst for each foot, it is ~3 times larger. This characteristic is supported by vascular responses that permit a theoretical maximal mass flow of thermal energy of 6.0 W (136 W m2) to each hand for a 1 °C thermal gradient. For each foot, this is 8.5 W (119 W m2). In an air temperature of 27 °C, the hands and feet of resting individuals can each dissipate 150–220 W m2 (male–female) of heat through radiation and convection. During hypothermia, the extremities are physiologically isolated, restricting heat flow to <0.1 W. When the core temperature increases ~0.5 °C above thermoneutral (rest), each hand and foot can sweat at 22–33 mL h−1, with complete evaporation dissipating 15–22 W (respectively). During heated exercise, sweat flows increase (one hand: 99 mL h−1; one foot: 68 mL h−1), with evaporative heat losses of 67–46 W (respectively). It is concluded that these attributes allow the hands and feet to behave as excellent radiators, insulators and evaporators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham P, Fromy B, Merzeau S, Jardel A, Saumet JL (2001) Dynamics of local pressure-induced cutaneous vasodilation in the human hand. Microvasc Res 61:122–129

    PubMed  CAS  Google Scholar 

  • Abramson DI (1965) Pathophysiology of arteriovenous shunts in the extremities. J Cardiovasc Surg 5:217–230

    Google Scholar 

  • Adar R, Kurchin A, Zweig A, Mozes M (1977) Palmar hyperhidrosis and its surgical treatment. Ann Surg 186:34–41

    PubMed  CAS  PubMed Central  Google Scholar 

  • Adelman S, Taylor CR, Heglund NC (1975) Sweating on paws and palms: what is its function? Am J Physiol 229:1400–1402

    PubMed  CAS  Google Scholar 

  • Alexander L (1945) The treatment of shock from prolonged exposure to cold, especially in water. Combined intelligence objectives subcommittee, item no 24, file no 26–37, pp 1–228

  • Allan JR, Wilson CG (1971) Influence of acclimatization on sweat sodium concentration. J Appl Physiol 30:708–712

    PubMed  CAS  Google Scholar 

  • Allwood MJ, Burry HS (1954) The effect of local temperature on blood flow in the human foot. J Physiol 124:345–357

    PubMed  CAS  PubMed Central  Google Scholar 

  • Amano T, Kato Y, Machado-Moreira CA, Taylor NAS, Inoue Y, Nishiyasu T, Kondo N (2011) Changes in eccrine sweating on the glabrous skin of the palm and finger during isometric exercise. Acta Physiol 202:649–655

    CAS  Google Scholar 

  • Bar-Or O, Lundegren HM, Magnusson LI, Buskirk ER (1968) Distribution of heat-activated sweat glands in obese and lean men and women. Hum Biol 40:235–248

    PubMed  CAS  Google Scholar 

  • Bazett HC (1968) The regulation of body temperatures. In: Newburgh LH (ed) Physiology of heat regulation and the science of clothing. Hafner Publ. Co., New York, pp 109–192

    Google Scholar 

  • Bennett AF, Hicks JW, Cullum AJ (2000) An experimental test of the thermoregulatory hypothesis for the evolution of endothermy. Int J Org Evol 54:1768–1773

    CAS  Google Scholar 

  • Bergersen TK, Hisdal J, Walløe L (1999) Perfusion of the human finger during cold-induced vasodilatation. Am J Physiol 276:R731–R737

    PubMed  CAS  Google Scholar 

  • Bernard C (1852) Sur les effets de la section de la portion céphalique du grand sympathique. Comptes Rendus des Séances et Mémoires de la Société de Biologie 4:168–170

    Google Scholar 

  • Bernard C (1876) Leçons sur la chaleur animale, sur les effets de la chaleur et sur la fièvre. J.-B Baillière et Fils, Paris

    Google Scholar 

  • Bini G, Hagbarth K-E, Hynninen P, Wallin BG (1980) Thermoregulatory and rhythm-generating mechanisms governing the sudomotor and vasoconstrictor outflow in human cutaneous nerves. J Physiol 306:537–552

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bittel JHM, Nonotte-Varly C, Livecchi-Gonnot GH, Savourey GLMJ, Hanniquet AM (1988) Physical fitness and thermoregulatory reactions in a cold environment in men. J Appl Physiol 65:1984–1989

    PubMed  CAS  Google Scholar 

  • Blair DA, Glover WE, Roddie IC (1960) Vasomotor fibres to skin in the upper arm, calf and thigh. J Physiol 153:232–238

    PubMed  CAS  PubMed Central  Google Scholar 

  • Blair DA, Glover WE, Roddie IC (1961) Vasomotor responses in the human arm during leg exercise. Circ Res 9:264–274

    Google Scholar 

  • Bodelsson M, Arneklo-Nobin B, Nobin A, Owman C, Sollerman C, Törnebrandt K (1990) Cooling enhances alpha2-adrenoceptor-mediated vasoconstriction in human hand veins. Acta Physiol Scand 138:283–291

    PubMed  CAS  Google Scholar 

  • Booth JD, Wilsmore BR, MacDonald AD, Zeyl A, McGhee S, Calvert D, Marino FE, Storlien LH, Taylor NAS (2001) Whole-body pre-cooling does not alter human muscle metabolism during sub-maximal exercise in the heat. Eur J Appl Physiol 84:587–590

    PubMed  CAS  Google Scholar 

  • Bothorel B, Dewasmes G, Hoeft A, Candas V (1991) Temperature and sweating responses in one-legged and two-legged exercise. Eur J Appl Physiol 63:157–164

    CAS  Google Scholar 

  • Boulant JA (2011) Hypothalamic neurons regulating body temperature. Comprehensive physiology, Handbook of physiology, environmental physiology, suppl 14, pp 105–126. First published in print 1996. doi:10.1002/cphy.cp040106

  • Boulant JA, Hardy JD (1974) The effect of spinal and skin temperatures on the firing rate and local thermosensitivity of preoptic neurons. J Physiol 216:1371–1374

    Google Scholar 

  • Boulant JA, Curras MC, Dean JB (1989) Neurophysiological aspects of thermoregulation. In: Wang LCH (ed) Advances in comparative and environmental physiology. Springer, Berlin, pp 117–160

    Google Scholar 

  • Brajkovic D, Ducharme MB (2003) Finger dexterity, skin temperature, and blood flow during auxiliary heating in the cold. J Appl Physiol 85:758–770

    Google Scholar 

  • Brajkovic D, Ducharme MB, Frim J (1998) Influence of localized auxiliary heated on hand comfort during cold exposure. J Appl Physiol 85:2054–2065

    PubMed  CAS  Google Scholar 

  • Broderick BJ, Corley GJ, Quondamatteo F, Breen PP, Serrador J, ÓLaighin G (2010) Venous emptying from the foot: influences of weight bearing, toe curls, electrical stimulation, passive compression, and posture. J Appl Physiol 109:1045–1052

    PubMed  Google Scholar 

  • Brück K, Hinkel P (1990) Thermoafferent networks and their adaptive modifications. In: Schönbaum E, Lomax P (eds) Thermoregulation: physiology and biochemistry. Pergamon Press, New York, pp 129–153

    Google Scholar 

  • Bukhari M, Hollis S, Moore T, Jayson MIV, Herrick AL (2000) Quantification of microcirculatory abnormalities in patients with Raynaud’s phenomenon and systemic sclerosis by video capillaroscapy. Rheumatology 39:506–512

    PubMed  CAS  Google Scholar 

  • Burton AC, Bazett HC (1936) A study of the average temperature of the tissues, of the exchanges of heat and vasomotor responses in man by means of a bath calorimeter. Am J Physiol 117:36–54

    Google Scholar 

  • Caldwell JN, Matsuda-Nakamura M, Taylor NAS (2014) Three-dimensional interactions of core and local skin temperatures in the control of hand and foot blood flows. Eur J Appl Physiol. doi:10.1007/s00421-014-2894-x

  • Caldwell JN, Taylor NAS (2014) Water-displacement plethysmography: a technique for the simultaneous thermal manipulation and measurement of whole-hand and whole-foot blood flows. Physiol Measurement (in press)

  • Casa DJ, Kenny GP, Taylor NAS (2010) Immersion treatment for exertional hyperthermia: cold or temperate water? Med Sci Sports Exerc 42:1246–1252

    PubMed  Google Scholar 

  • Catania JJ, Thompson LW, Michalewski HA, Bowman TE (1980) Comparisons of sweat gland counts, electrodermal activity, and habituation behavior in young and old groups of subjects. Psychophysiology 17:146–152

    PubMed  CAS  Google Scholar 

  • Chalmers TM, Keele CA (1952) The nervous and chemical control of sweating. Br J Dermatol 64:43–54

    PubMed  CAS  Google Scholar 

  • Charkoudian N (2003) Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 78:603–612

    PubMed  Google Scholar 

  • Chen F, Nilsson H, Holmér I (1999) Evaluation of hand and finger heat loss with heated hand model. Appl Human Sci 18:135–140

    PubMed  CAS  Google Scholar 

  • Cheung SS, Mekjavic IB (2007) Cold-induced vasodilatation is not homogenous or generalizable across the hand and feet. Eur J Appl Physiol 99:701–705

    PubMed  Google Scholar 

  • Christensen EH, Nielsen M (1942) Investigations of the circulation in the skin at the beginning of muscular work. Acta Physiol Scand 4:162–170

    Google Scholar 

  • Clark ER (1938) Arterio-venous anastomoses. Physiol Rev 18:229–247

    Google Scholar 

  • Clark E, Lhamon RH (1917) Observations on the sweat glands of tropical and northern races. Anat Rec 12:139–147

    Google Scholar 

  • Collins KJ (1962) Composition of palmar and forearm sweat. J Appl Physiol 17:99–102

    PubMed  CAS  Google Scholar 

  • Conrad MC (1971) Functional anatomy of the circulation to the lower extermities. Year Book, Chicago

    Google Scholar 

  • Costill DL (1977) Sweating: its composition and effects on body fluids. Ann N Y Acad Sci 301:160–174

    PubMed  CAS  Google Scholar 

  • Cotter JD, Taylor NAS (2005) Distribution of cutaneous sudomotor and alliesthesial thermosensitivity in mildly heat-stressed humans: an open-loop approach. J Physiol 565:335–345

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cotter JD, Patterson MJ, Taylor NAS (1995) A method for clamping human skin and body core temperatures. Proc Aust Physiol Pharmacol Soc 26:204P

    Google Scholar 

  • Crawshaw LI, Nadel ER, Stolwijk JAJ, Stamford BA (1975) Effect of local cooling on sweating rate and cold sensation. Pflügers Arch 354:19–27

    PubMed  CAS  Google Scholar 

  • Crompton AW, Taylor CR, Jagger JA (1978) Evolution of homeothermy in mammals. Nature 272:333–336

    PubMed  CAS  Google Scholar 

  • Cunningham DJ, Stolwijk JAJ, Wenger CB (1978) Comparative thermoregulatory responses of resting men and women. J Appl Physiol 45:908–915

    PubMed  CAS  Google Scholar 

  • Currie J (1797) Medical reports on the effects of water, cold and warm as a remedy in fever, and febrile diseases; whether applied to the surface of the body, or used as a drink: with observations on the nature of fever; and on the effects of opium, alcohol, and inanition. Cadell and Davies, London

  • Currie J, Percival T (1792) An account of the remarkable effects of a shipwreck on the mariners; with experiments and observations on the influence of immersion in fresh and salt water, hot and cold, on the powers of the living body. Philos Trans Royal Soc Lond 82:199–224

  • Daanen HAM (2003) Finger cold-induced vasodilation: a review. Eur J Appl Physiol 89:411–426

    PubMed  CAS  Google Scholar 

  • Daanen HAM (2009) Manual performance deterioration in the cold estimated using the wind chill equivalent temperature. Ind Health 47:262–270

    PubMed  Google Scholar 

  • Daanen HAM, Ducharme MB (1999) Finger cold-induced vasodilation during mild hypothermia, hyperthermia and at thermoneutrality. Aviat Space Environ Med 70:1206–1210

    PubMed  CAS  Google Scholar 

  • Darrow CW (1937) Neural mechanisms controlling the palmar galvanic skin reflex and palmar sweating. Arch Neurol Psychiatry 37:641–663

    Google Scholar 

  • Dill DB, Hall FG, van Beaumont W (1966) Sweat chloride concentration: sweat rate, metabolic rate, skin temperature, and age. J Appl Physiol 21:99–106

    PubMed  CAS  Google Scholar 

  • Dill DB, Horvath SM, van Beaumont W, Gehlsen G, Burrus K (1967) Sweat electrolytes in desert walks. J Appl Physiol 23:746–751

    PubMed  CAS  Google Scholar 

  • Edelberg R (1961) The relationship between galvanic skin response, vasoconstriction, and tactile sensitivity. J Exp Psychol 62:187–195

    PubMed  CAS  Google Scholar 

  • Edmondson RA, Banerjee AK, Rennie JA (1992) Endoscopic transthoracic sympathectomy in the treatment of hyperhidrosis. Ann Surg 215:289–293

    PubMed  CAS  PubMed Central  Google Scholar 

  • Edwards M, Burton AC (1960) Correlation of heat output and blood flow in the finger, especially in cold-induced vasodilation. J Appl Physiol 15:201–208

    PubMed  CAS  Google Scholar 

  • Eichna LW, Ashe WF, Bean WB, Shelley WB (1945) The upper limits of environmental heat and humidity tolerated by acclimatized men working in hot environments. J Ind Hyg Toxicol 27:59–84

    Google Scholar 

  • Emrich HM, Stoll E, Friolet B, Colombo JP, Richterich R, Rossi E (1968) Sweat composition in relation to rate of sweating in patients with cystic fibrosis of the pancreas. Pediatr Res 2:464–478

    PubMed  CAS  Google Scholar 

  • Enander AE, Hygge S (1990) Thermal stress and human performance. Scand J Work Environ Health 16(suppl 1):44–50

    PubMed  Google Scholar 

  • Ferris BG, Forster RE, Pillion EL, Christensen WR (1947) Control of peripheral blood flow: responses in the human hand when extremities are warmed. Am J Physiol 150:304–314

    PubMed  Google Scholar 

  • Fetcher ES, Hall JF, Shaub HG (1949) The skin temperature of an extremity as a measure of its blood flow. Science 110:422–423

    PubMed  CAS  Google Scholar 

  • Flouris AD, Cheung SS (2009) Influence of thermal balance on cold-induced vasodilation. J Appl Physiol 106:1264–1271

    PubMed  Google Scholar 

  • Fogarty AL, Barlett B, Ventenat V, Havenith G (2007) Regional foot sweat rates during a 65-minute uphill walk with a backpack. In: Mekjavic IB, Kounalakis SN, Taylor NAS (eds) Environmental ergonomics XII. Biomed d.o.o, Ljubljana, pp 283–284

    Google Scholar 

  • Folk GE, Semken HA (1991) The evolution of sweat glands. Int J Biometeorol 35:180–186

    PubMed  Google Scholar 

  • Forster RE, Ferris BG, Day R (1946) The relationship between total heat exchange and blood flow in the hand at various ambient temperatures. Am J Physiol 146:600–609

    PubMed  Google Scholar 

  • Freeman NE (1935) The effect of temperature on the rate of blood flow in the normal and in the sympathectomized hand. Am J Physiol 113:384–398

    Google Scholar 

  • Freeman H, Nickerson RF (1938) Skin and body temperatures of normal individuals under cold conditions. J Nutr 15:597–606

    CAS  Google Scholar 

  • Golden FStC, Hervey GR (1977) The mechanism of the afterdrop following immersion hypothermia in pigs. J Physiol 272:P26–P27

  • Golden FStC, Francis TJR, Gallimore D, Pethybridge R (2013) Lessons from history: morbidity of cold injury in the Royal Marines during the Falklands Conflict of 1982. Extreme Physiol Med 2:23

  • Goldman RF, Kampman B (2007) Handbook on clothing. Biomedical effects of military clothing and equipment systems. Report of NATO Research Study Group 7 on Bio-medical research aspects of military protective clothing. 2nd edn. International Society for Environmental Ergonomics. http://www.environmental-ergonomics.org. Accessed 15 Nov 2013

  • González-Alonso J, Quistorff B, Krustrup P, Bangsbo J, Saltin B (2000) Heat production in human skeletal muscle at the onset of intense dynamic exercise. J Physiol 524:603–615

    PubMed  PubMed Central  Google Scholar 

  • Grant RT, Bland EF (1931) Observations on arteriovenous anastomoses in human skin and in the birds foot with special references to the reaction to cold. Heart 15:385–411

    Google Scholar 

  • Grant RT, Pearson RSB (1938) The blood circulation in the human limb; observations on the differences between the proximal and distal parts and remarks on the regulation of body temperature. Clin Sci 3:119–173

    Google Scholar 

  • Gray H (1918) Anatomy of the human body. Lea & Febiger, Philadelphia. Bartleby.com, 2000. www.bartleby.com/107/

  • Greenfield ADM (1963) The circulation through the skin. In: Hamilton WF, Dow P (eds) Handbook of physiology. Circulation. Sect 2, vol II, American Physiological Society, Washington DC, pp 1325–1351

  • Grew N (1684) The description and use of the pores in the skin of the hands and feet. Philos Trans 14:566–567

    Google Scholar 

  • Hales JRS (1985) Skin arteriovenous anastomoses, their control and role in thermoregulation. In: Johansen K, Burggren WW (eds) Cardiovascular shunts. Alfred Benzon Symposium. pp 433–448

  • Hales JRS, Hutchinson JCD (1971) Metabolic, respiratory and vasomotor responses to heating the scrotum of the ram. J Physiol 212:353–375

    PubMed  CAS  PubMed Central  Google Scholar 

  • Halliwill JR, Sieck DC, Romero SA, Buck TM, Ely MR (2013) Blood pressure regulation X: what happens when the muscle pump is lost? Post-exercise hypotension and syncope. Eur J Appl Physiol (online first). doi:10.1007/s00421-013-2761-1

  • Harcourt-Smith WE, Aiello LC (2004) Fossils, feet and the evolution of human bipedal locomotion. J Anat 204:403–416

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hardy JD, Oppel TW (1938) Studies in temperature sensation IV: the stimulation of cold sensation by radiation. J Clin Investig 17:771–778

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hardy JD, Hellon RF, Sutherland K (1964) Temperature-sensitive neurones in the dog’s hypothalamus. J Physiol 175:242–253

    PubMed  CAS  PubMed Central  Google Scholar 

  • Harrison J, MacKinnon PCB (1966) Physiological role of the adrenal medulla in the palmar anhidrotic response to stress. J Appl Physiol 21:88–92

    PubMed  CAS  Google Scholar 

  • Hashimoto K (1978) The eccrine sweat gland. In: Jarrett A (ed) The physiology and pharmacology of the skin. Academic Press, London, pp 1543–1573

    Google Scholar 

  • Heinrich B (1977) Why have some animals evolved to regulate a high body temperature? Am Nat 111:623–640

    Google Scholar 

  • Hellon RF, Lind AR (1956) Observations on the activity of sweat glands with special reference to the influence of ageing. J Physiol 133:132–144

    PubMed  CAS  PubMed Central  Google Scholar 

  • Henriques FC, Moritz AR (1947) Studies of thermal injury I: the conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation. Am J Pathol 23:531–549

    Google Scholar 

  • Hensel H (1981) Thermoreception and temperature regulation. Monographs of the Physiological Society, vol 38, Academic Press, London

  • Hensel H, Andres KH, Düring MV (1974) Structure and function of cold receptors. Pflügers Arch 352:1–10

    PubMed  CAS  Google Scholar 

  • Hertzman AB, Randall WC, Peiss CN, Seckendorf R (1952) Regional rates of evaporation from the skin at various environmental temperatures. J Appl Physiol 5:153–161

    PubMed  CAS  Google Scholar 

  • Heus R, Daanen HAM, Havenith G (1995) Physiological criteria for functioning of hands in the cold: a review. Appl Ergon 26:5–13

    PubMed  CAS  Google Scholar 

  • Homma S, Matsunami K, Han XY, Deguchi K (2001) Hippocampus in relation to mental sweating response evoked by memory recall and mental calculation: a human electroencephalography study with dipole tracing. Neurosci Lett 305:1–4

    PubMed  CAS  Google Scholar 

  • House JR (2003) Modelling the effectiveness of techniques for reducing heat strain in Royal Navy nuclear, biological and chemical cleansing stations’ teams. J Royal Navy Med Serv 89:19–26

    CAS  Google Scholar 

  • House JR, Holmes C, Allsopp AJ (1997) Prevention of heat strain by immersing the hands and forearms in water. J Royal Navy Med Serv 83:26–30

    CAS  Google Scholar 

  • House CM, Lloyd K, House JR (2003a) Heated socks maintain toe temperature but not always skin blood flow as mean skin temperature falls. Aviat Space Environ Med 74:891–893

    PubMed  CAS  Google Scholar 

  • House JR, Lunt H, Magness A, Lyons J (2003b) Testing the effectiveness of techniques for reducing heat strain in Royal Navy nuclear, biological and chemical cleansing stations’ teams. J Royal Navy Med Serv 89:27–34

    CAS  Google Scholar 

  • Hoyer H (1877) Über unmittlebare einmündung kleinster arterien in gefässäste venösen charakters. Archiv fur Mikroskopische Anatomie 13:606–644

    Google Scholar 

  • Hsu Y-W, Yu C-Y (2010) Hand surface area estimation formula using 3D anthropometry. J Occup Environ Hyg 7:633–639

    PubMed  CAS  Google Scholar 

  • Hunter J, Kerr EH, Whillans MG (1952) The relation between joint stiffness upon exposure to cold and the characteristics of synovial fluid. Can J Med Sci 30:367–377

    PubMed  CAS  Google Scholar 

  • Iggo A (1969) Cutaneous thermoreceptors in primates and sub-primates. J Physiol 200:403–430

    PubMed  CAS  PubMed Central  Google Scholar 

  • Imray CH, Richards P, Greeves J, Castellani JW (2011) Nonfreezing cold-induced injuries. J R Army Med Corps 157:79–84

    PubMed  CAS  Google Scholar 

  • Ingram DL, Legge KF (1972) The influence of deep body and skin temperatures on thermoregulatory responses to heating of the scrotum in pigs. J Physiol 224:477–487

    PubMed  CAS  PubMed Central  Google Scholar 

  • ISO/TR 7250-2 (2010) Basic human body measurements for technological design part 2: statistical summaries of the body measurements from individual ISO populations. International Standard Organisation, Geneva

  • Ivanov K, Konstantinov V, Danilova N, Sleptchuck N, Rumiantsev G (1986) Thermoreceptors distribution in different skin layers and its significance for thermoregulation. J Therm Biol 11:25–29

    Google Scholar 

  • Iwase S, Ikeda T, Kitazawa H, Hakusui S, Sugenoya J, Mano T (1997) Altered response in cutaneous sympathetic outflow to mental and thermal stimuli in primary palmoplantar hyperhidrosis. J Auton Nerv Syst 64:65–73

    PubMed  CAS  Google Scholar 

  • Jessen C (2011) Interaction of body temperatures in control of thermoregulatory effector mechanisms. Comprehensive physiology, Handbook of physiology, environmental physiology, suppl 14, pp 127–138 (first published in print 1996)

  • Johansson L, Hägg M, Fischer T (2002) Skin blood flow in the human hand in relation to applied pressure. Eur J Appl Physiol 86:394–400

    PubMed  Google Scholar 

  • Johnson JM, Kellogg DL (2010) Local thermal control of the human cutaneous circulation. J Appl Physiol 109:1229–1238

    PubMed  PubMed Central  Google Scholar 

  • Johnson JM, Proppe DW (2011) Cardiovascular adjustments to heat stress. Comprehensive physiology, Handbook of physiology, environmental physiology, suppl 14, pp 215–243 (first published in print 1996). doi:10.1002/cphy.cp040111

  • Johnson C, Dawber R, Shuster S (1970) Surface appearance of the eccrine sweat duct by scanning electron microscopy. Br J Dermatol 83:655–660

    PubMed  CAS  Google Scholar 

  • Johnson JM, Brengelmann GL, Rowell LB (1976) Interactions between local and reflex influences on human forearm skin blood flow. J Appl Physiol 41:826–831

    PubMed  CAS  Google Scholar 

  • Johnson JM, Pérgola PE, Liao FK, Kellogg DL, Crandall CG (1995) Skin of the dorsal aspect of human hands and fingers possesses an active vasodilator system. J Appl Physiol 78:948–954

    PubMed  CAS  Google Scholar 

  • Juniper K, Dykman RA (1967) Skin resistance, sweat-gland counts, salivary flow, and gastric secretion: age, race, and sex differences, and intercorrelations. Psychophysiology 4:216–222

    PubMed  Google Scholar 

  • Karmani S (2006) The thermal properties of bone and the effects of surgical intervention. Curr Orthop 20:52–58

    Google Scholar 

  • Kellogg DL (2006) In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. J Appl Physiol 100:1709–1718

    PubMed  CAS  Google Scholar 

  • Kenny GP, Journeay WS (2010) Human thermoregulation: separating thermal and nonthermal effects on heat loss. Front Biosci 15:259–290

    CAS  Google Scholar 

  • Keramidas ME, Musizza B, Kounalakis SN, Mekjavic IB (2010) Enhancement of the finger cold-induced vasodilation response with exercise training. Eur J Appl Physiol 109:133–140

    PubMed  Google Scholar 

  • Kerassidis S (1994) Is palmar and plantar sweating thermoregulatory? Acta Physiol Scand 152:259–263

    PubMed  CAS  Google Scholar 

  • Knip AS (1969) Measurement and regional distribution of functioning eccrine sweat glands in male and female Caucasians. Hum Biol 41:380–387

    PubMed  CAS  Google Scholar 

  • Knip AS (1972) Quantitative considerations on functioning eccrine sweat glands in male and female migrant Hindus from Surinam. Proc Koninklijke Nederlandse Akademie van Wetenschappen Ser C Biol Med Sci 75:44–54

    CAS  Google Scholar 

  • Kondo N, Nishiyasu T, Inoue Y, Koga S (2010) Non-thermal modification of heat-loss responses during exercise in humans. Eur J Appl Physiol 110:447–458

    PubMed  Google Scholar 

  • Kuklane K, Afanasieva R, Burmistrova O, Bessonova N, Holmér I (1999) Determination of heat loss from the feet and insulation of the footwear. Int J Occup Saf Ergon 5:465–476

    PubMed  CAS  Google Scholar 

  • Kuklane K, Holmér I, Havenith G (2000) Validation of a model for prediction of skin temperatures in footwear. J Physiol Anthropol Appl Hum Sci 19:29–34

    CAS  Google Scholar 

  • Kunkel P, Stead EA (1938) Blood flow and vasomotor reactions in the foot in health, in arteriosclerosis, and in thrombo-angiitis obliterans. J Clin Investig 17:715–723

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kunkel P, Stead EA, Weiss S (1939) Blood flow and vasomotor reactions in the hand, forearm, foot and calf in response to physical and chemical stimuli. J Clin Investig 18:225–238

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kuno Y (1938) Variations in secretory activity of human sweat glands. Lancet 1:299–303

    Google Scholar 

  • Kuno Y (1956) Human perspiration. C.C. Thomas, Springfield

    Google Scholar 

  • Kux M (1978) Thoracic endoscopic sympathectomy in palmar and axillary hyperhidrosis. Arch Surg 113:264–266

    PubMed  CAS  Google Scholar 

  • Ladell WSS (1945) Thermal sweating. Br Med Bull 3:175–179

    PubMed  CAS  Google Scholar 

  • Lamah M, Mortimer PS, Dormandy JA (1999) Quantitative study of capillary density in the skin of the foot in peripheral vascular disease. Br J Surg 86:342–348

    PubMed  CAS  Google Scholar 

  • Latzka WA, Montain SJ (1999) Water and electrolyte requirements for exercise. Clin Sports Med 18:513–524

    PubMed  CAS  Google Scholar 

  • Levy JM, Hessel SJ, Joseph RB, Bodell LS (1985) Venous “lakes” of the hands. Radiology 156:603–605

    PubMed  CAS  Google Scholar 

  • Lewis T, Pickering GW (1931) Vasodilatation in the hands in response to warming the body, with evidence for sympathetic vasodilator nerves in man. Heart 16:33–51

    Google Scholar 

  • Libert JP, Candas V, Vogt JJ (1978) Sweating response in man during transient rises of air temperature. J Appl Physiol 44:284–290

    PubMed  CAS  Google Scholar 

  • List CF, Peet MM (1938) Sweat secretion in man II. Anatomic distribution of disturbances in sweating associated with lesions of the sympathetic nervous system. Arch Neurol Psychiatry 40:27–43

    Google Scholar 

  • Livingstone SD (1976) Changes in cold-induced vasodilation during Arctic exercises. J Appl Physiol 40:455–457

    PubMed  CAS  Google Scholar 

  • Livingstone SD, Nolan RW, Cattroll SW (1989) Heat loss caused by immersing the hands in water. Aviat Space Environ Med 60:1166–1171

    PubMed  CAS  Google Scholar 

  • Lotens WA (1992) Simulation of hand cooling due to touching cold materials. Eur J Appl Physiol 65:59–65

    CAS  Google Scholar 

  • Lovejoy CO, Simpson SW, White TD, Asfaw B, Suwa G (2009) Careful climbing in the Miocene: the forelimbs of Ardipithecus ramidus and humans are primitive. Science 326:70e1–70e8

    PubMed  Google Scholar 

  • Machado-Moreira CA, Taylor NAS (2012a) Sudomotor responses from glabrous and non-glabrous skin during cognitive and painful stimulations following passive heating. Acta Physiol 204:571–581

    CAS  Google Scholar 

  • Machado-Moreira CA, Taylor NAS (2012b) Psychological sweating from glabrous and non-glabrous skin surfaces under thermoneutral conditions. Psychophysiology 49:369–374

    PubMed  Google Scholar 

  • Machado-Moreira CA, Caldwell JN, Mekjavic IB, Taylor NAS (2008a) Sweat secretion from palmar and dorsal surfaces of the hands during passive and active heating. Aviat Space Environ Med 79:1034–1040

    PubMed  Google Scholar 

  • Machado-Moreira CA, Smith FM, van den Heuvel AMJ, Mekjavic IB, Taylor NAS (2008b) Sweat secretion from the torso during passively-induced and exercise-related hyperthermia. Eur J Appl Physiol 104:265–270

    PubMed  Google Scholar 

  • Machado-Moreira CA, Wilmink F, Meijer A, Mekjavic IB, Taylor NAS (2008c) Local differences in sweat secretion from the head during rest and exercise in the heat. Eur J Appl Physiol 104:257–264

    PubMed  Google Scholar 

  • Machado-Moreira CA, McLennan PL, Lillioja S, van Dijk W, Caldwell JN, Taylor NAS (2012) The cholinergic blockade of both thermally and non-thermally induced human eccrine sweating. Exp Physiol 97:930–942

    PubMed  CAS  Google Scholar 

  • MacKinnon PCB (1954) Variations with age in the number of active palmar digital sweat glands. J Neurol Neurosurg Psychiatry 17:124–126

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maddock WG, Coller FA (1933) The role of the extremities in the dissipation of heat. Am J Physiol 106:589–596

    Google Scholar 

  • Mahadevan V, Anderson R, Williams L, Renwick P (2000) Interactive foot and ankle. Primal Pictures Ltd., London

    Google Scholar 

  • Martin AD (1984) An anatomical basis for assessing human body composition: evidence from 25 dissections. Doctor of Philosophy, Simon Fraser University

  • Marzke MW (1992) Evolutionary development of the human thumb. Hand Clin 8:1–8

    PubMed  CAS  Google Scholar 

  • Marzke MW, Marzke RF (2000) Evolution of the human hand: approaches to acquiring, analysing and interpreting the anatomical evidence. J Anat 197:121–140

    PubMed  PubMed Central  Google Scholar 

  • Masson P (1937) Les glomus neuro-vasculaires. Histophysiologie 4, Hermann et Cie, Paris

  • Maughan RJ, Shirreffs SM (2008) Development of individual hydration strategies for athletes. Int J Sports Nutr Exerc Metab 18:457–472

    Google Scholar 

  • Mayrovitz HN, Sims N, Litwin B, Pfister S (2005) Foot volume estimates based on a geometric algorithm in comparison to water displacement. Lymphology 38:20–27

    PubMed  CAS  Google Scholar 

  • Mayrovitz HN, Sims N, Hill CJ, Hernandez T, Greenshner A, Diep H (2006) Hand volume estimates based on a geometric algorithm in comparison to water displacement. Lymphology 39:95–103

    PubMed  CAS  Google Scholar 

  • McGrouther DA, Colditz JC, Harris JM, Stoller DW (2000) Interactive hand. Primal Pictures Ltd., London

    Google Scholar 

  • Mekjavic IB, Eiken O (2006) Contribution of thermal and nonthermal factors to the regulation of body temperature in humans. J Appl Physiol 100:2065–2072

    PubMed  Google Scholar 

  • Mertz L (2004) The circulatory system. Greenwood Press, Westport

    Google Scholar 

  • Michael-Titus A, Revest P, Shortland P (2007) The nervous system. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Midtgåtrd U (1980) Arteriovenous anastomoses and vascularity in the feet of eiders and gulls (aves). Zoomorphology 96:263–270

    Google Scholar 

  • Miller R, Ross WD, Rapp A, Roede M (1980) Sex chromosome aneuploidy and anthropometry: a new proportionality assessment using the phantom stratagem. Am J Med Genet 5:125–135

    PubMed  CAS  Google Scholar 

  • Minson CT, Berry LT, Joyner MJ (2001) Nitric oxide and neurally mediated regulation of skin blood flow during local heating. J Appl Physiol 91:1619–1626

    PubMed  CAS  Google Scholar 

  • Molyneux GS, Bryden MM (1981) Comparative aspects of arteriovenous anastomoses. In: Harrison RJ, Holmes RL (eds) Progress in anatomy. Cambridge University Press, Cambridge, pp 207–227

    Google Scholar 

  • Montagna W, Parakkal PF (1974) The structure and function of skin. Academic Press, New York

    Google Scholar 

  • Morimoto T (1978) Sweat secretion. In: Jarrett A (ed) The physiology and pharmacology of the skin. Academic Press, London, pp 1611–1621

    Google Scholar 

  • Mørk C, Kvernebo K, Asker CL, Salrud EG (2002) Reduced skin capillary density during attacks of erythromelalgia implies arteriovenous shunting as pathogenetic mechanism. J Invest Dermatol 119:949–953

    PubMed  Google Scholar 

  • Nadel ER, Mitchell JW, Stolwijk JAJ (1973) Differential thermal sensitivity in the human skin. Pflügers Arch 340:71–76

    PubMed  CAS  Google Scholar 

  • Nagasaka T, Cabanac M, Hirata K, Nunomura T (1987a) Control of local heat gain by vasomotor response of the hand. J Appl Physiol 63:1335–1338

    PubMed  CAS  Google Scholar 

  • Nagasaka T, Hirata K, Nunomura T (1987b) Contribution of arteriovenous anastomoses to vasoconstriction induced by local heating of the human finger. Jpn J Physiol 37:425–433

    PubMed  CAS  Google Scholar 

  • Nakayama T (1969) A further investigation on the nature of sweat discharge in man. Tohoku J Exp Med 98:265–272

    PubMed  CAS  Google Scholar 

  • Nakayama T, Takagi K (1959) Minute pattern of human perspiration observed by a continuously recording method. Jpn J Physiol 9:359–364

    PubMed  CAS  Google Scholar 

  • Nakazato Y, Tamura N, Ohkuma A, Yoshimaru K, Shimazu K (2004) Idiopathic pure sudomotor failure: anhidrosis due to deficits in cholinergic transmission. Neurology 63:1476–1480

    PubMed  CAS  Google Scholar 

  • Necker R (1977) Thermal sensitivity of different skin areas in pigeons. J Comp Physiol 116:239–246

    Google Scholar 

  • Nelms JD (1963) Functional anatomy of skin related to temperature regulation. Fed Proc 22:933–936

    PubMed  CAS  Google Scholar 

  • Nilsson AL, Nilsson GE, Öberg PÅ (1980) A note on periodic sweating. Acta Physiol Scand 108:189–190

    PubMed  CAS  Google Scholar 

  • Nuzzaci G, Evangelisti A, Righi D, Giannico G, Nuzzaci I (1999) Is there any relationship between cold-induced vasodilatation and vasomotion? Microvasc Res 57:1–7

    PubMed  CAS  Google Scholar 

  • O’Brien C (2005) Reproducibility of the cold-induced vasodilation response in the human finger. J Appl Physiol 98:1334–1340

    PubMed  Google Scholar 

  • Ogata K (1935) Functional variations in human sweat glands, with remarks upon the regional differences of the amount of sweat. J Orient Med 23:98–101

    Google Scholar 

  • Ogawa T (1975) Thermal influence on palmar sweating and mental influence on generalized sweating in man. Jpn J Physiol 25:525–536

    PubMed  CAS  Google Scholar 

  • Ohmi M, Tanigawa M, Yamada A, Ueda Y, Haruna M (2009) Dynamic analysis of internal and external mental sweating by optical coherence tomography. J Biomed Opt 41:014026

    Google Scholar 

  • Pang CCY (2001) Autonomic control of the venous system in health and disease, effects of drugs. Pharmacol Ther 90:179–230

    PubMed  CAS  Google Scholar 

  • Patterson MJ, Cotter JD, Taylor NAS (1998) Human sudomotor responses to heating and cooling upper body skin surfaces: differential cutaneous thermal sensitivity. Acta Physiol Scand 163:289–296

    PubMed  CAS  Google Scholar 

  • Patterson MJ, Galloway SDR, Nimmo MA (2000) Variations in regional sweat composition in normal human males. Exp Physiol 85:869–875

    PubMed  CAS  Google Scholar 

  • Pegum JM, Fegan WG (1967a) Anatomy of venous return from the foot. Cardiovasc Res 1:241–248

    Google Scholar 

  • Pegum JM, Fegan WG (1967b) Physiology of venous return from the foot. Cardiovasc Res 1:249–254

    Google Scholar 

  • Penfield W, Rasmussen T (1952) The cerebral cortex of man. MacMillan Press, New York

    Google Scholar 

  • Pennes HH (1948) Analysis of tissue and arterial blood temperature in the human forearm. J Appl Physiol 1:93–122

    PubMed  CAS  Google Scholar 

  • Pérgola PE, Kellogg DL, Johnson JM, Kosiba WA, Solomon DE (1993) Role of sympathetic nerves in the vascular effects of local temperature in human forearm skin. Am J Physiol 265:H785–H792

    PubMed  Google Scholar 

  • Phillips PK, Heath JE (1992) Heat exchange by the pinna of the African elephant (Loxodonta africana). Comp Biochem Physiol Comp Physiol 101:693–699

    PubMed  CAS  Google Scholar 

  • Pickering GW, Hess W (1933) Vasodilatation in the hands and feet in response to warming the body. Clin Sci 1:213–223

    Google Scholar 

  • Pierau F-K (2011) Peripheral thermosensors. Comprehensive physiology, Handbook of physiology, environmental physiology, suppl 14, pp 85–104 (first published in print 1996). doi:10.1002/cphy.cp040105

  • Preuschoft H (2004) Mechanism for the acquisition of habitual bipedality: are there biomechanical reasons for the acquisition of upright bipedal posture? J Anat 204:363–384

    PubMed  PubMed Central  Google Scholar 

  • Proppe DW, Brengelmann GL, Rowell LB (1976) Control of baboon limb blood flow and heart rate: role of skin vs. core temperature. Am J Physiol 231:1457–1465

    PubMed  CAS  Google Scholar 

  • Putz RV, Tuppek A (1999) Evolution der hand. Handchir Mikrochir Plast Chir 31:357–361

    PubMed  CAS  Google Scholar 

  • Quinton PM (1983) Sweating and its disorders. Ann Rev Med 34:429–452

    PubMed  CAS  Google Scholar 

  • Quraishy MS, Giddings AEB (1993) Treating hyperhidrosis. Br Med J 306:1221–1222

    CAS  Google Scholar 

  • Randall WC (1946) Quantitation and regional distribution of sweat glands in man. J Clin Investig 25:761–767

    PubMed  CAS  PubMed Central  Google Scholar 

  • Regan JM, Macfarlane DJ, Taylor NAS (1996) An evaluation of the role of skin temperature during heat adaptation. Acta Physiol Scand 158:365–375

    PubMed  CAS  Google Scholar 

  • Rieger R, de Paula Loureiro M, Pedevilla S, de Oliveira RA (2011) Endoscopic lumbar sympathectomy following thoracic sympathectomy in patients with palmoplantar hyperhidrosis. World J Surg 35:49–53

  • Roberts DF, Salzano FM, Willson JOC (1970) Active sweat gland distribution in Caingang Indians. Am J Phys Anthropol 32:395–400

    PubMed  CAS  Google Scholar 

  • Robertshaw D (1977) Neuroendocrine control of sweat glands. J Investig Dermatol 69:121–129

    PubMed  CAS  Google Scholar 

  • Roddie IC (2011) Circulation to skin and adipose tissue. Comprehensive physiology. Handbook of physiology, The cardiovascular system, peripheral circulation and organ blood flow. suppl 8, pp 285–317 (first published in print 1983). doi:10.1002/cphy.cp020310

  • Roddie IC, Shepherd JT (1956) The blood flow through the hand during local heating, release of sympathetic vasomotor tone by indirect heating, and a combination of both. J Physiol 131:657–664

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roddie IC, Shepherd JT, Whelan RF (1957a) The contribution of constrictor and dilator nerves to the skin vasodilatation during body heating. J Physiol 136:489–497

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roddie IC, Shepherd JT, Whelan RF (1957b) A comparison of the heat elimination from the normal and nerve-blocked finger during body heating. J Physiol 138:445–448

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rothe CF (1983) Reflex control of veins and vascular capacitance. Physiol Rev 63:1281–1342

    PubMed  CAS  Google Scholar 

  • Rowell LB (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54(75):159

    Google Scholar 

  • Rowell LB (1983) Cardiovascular aspects of human thermoregulation. Circ Res 52:367–379

    PubMed  CAS  Google Scholar 

  • Rowell LB (1993) Human cardiovascular control. Oxford University Press, New York

    Google Scholar 

  • Rowell LB, Brengelmann GL, Blackmon JR, Murray JA (1970) Redistribution of blood flow during sustained high skin temperature in resting man. J Appl Physiol 28:415–420

    PubMed  CAS  Google Scholar 

  • Ruben JA (1995) The evolution of endothermy in mammals and birds: from physiology to fossils. Annu Rev Physiol 57:69–95

    PubMed  CAS  Google Scholar 

  • Rushmer RF, Buettner KJK, Short JM, Odland GF (1966) The skin. Science 154:343–348

    PubMed  CAS  Google Scholar 

  • Sato K (1973) Sweat induction from an isolated eccrine sweat gland. Am J Physiol 225:1147–1152

    PubMed  CAS  Google Scholar 

  • Sato K (1977) The physiology, pharmacology, and biochemistry of the eccrine sweat gland. Rev Physiol Biochem Pharmacol 79:51–131

    PubMed  CAS  Google Scholar 

  • Sato K, Sato F (1983) Individual variations in structure and function of human eccrine sweat gland. Am J Physiol 245:R203–R208

    PubMed  CAS  Google Scholar 

  • Savard GK, Cooper KE, Veale WL, Malkinson TJ (1985) Peripheral blood flow during rewarming from mild hypothermia in humans. J Appl Physiol 58:4–13

    PubMed  CAS  Google Scholar 

  • Schaefer O, Hildes JA, Greidanus P, Leung D (1974) Regional sweating in Eskimos compared to Caucasians. Can J Physiol Pharmacol 52:960–965

    PubMed  CAS  Google Scholar 

  • Scheuplein RJ, Blank IH (1971) Permeability of the skin. Physiol Rev 51:702–747

    PubMed  CAS  Google Scholar 

  • Schmidt H-X, Lanz U (2004) Surgical anatomy of the hand. Thieme, New York

    Google Scholar 

  • Scholander PF, Krog J (1957) Countercurrent heat exchange and vascular bundles in sloths. J Appl Physiol 10:405–411

    PubMed  CAS  Google Scholar 

  • Scholander PF, Schevill WE (1955) Counter-current vascular heat exchange in the fins of whales. J Appl Physiol 8:279–282

    PubMed  CAS  Google Scholar 

  • Schotzinger RJ, Landis SC (1988) Cholinergic phenotype developed by noradrenergic sympathetic neurons after innervation of a novel cholinergic target in vivo. Nature 335:637–639

    PubMed  CAS  Google Scholar 

  • Schwartz IL, Thaysen JH (1956) Excretion of sodium and potassium in human sweat. J Clin Investig 35:114–120

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shana G, Bohn C (2003) Anthropometrical data and coefficients of regression related to gender and race. Appl Ergon 34:327–337

    Google Scholar 

  • Silver A, Montagna W, Karacan I (1964) Age and sex differences in spontaneous, adrenergic and cholinergic human sweating. J Investig Dermatol 43:255–265

    CAS  Google Scholar 

  • Simon E (1974) Temperature regulation: the spinal cord as a site of extrahypothalamic thermoregulatory function. Rev Physiol Biochem Pharmacol 71:1–76

    PubMed  Google Scholar 

  • Simon E, Schmid HA, Pehl U (1998) Spinal neuronal thermosensitivity in vivo and in vitro in relation to hypothalamic neuronal thermosensitivity. In: Sharma HS, Westman J (eds) Progress in brain research, vol 115. Elsevier, Amsterdam, pp 25–47

    Google Scholar 

  • Simons P, Coleridge Smith P, Lees WR, McGrouther DA (1996) Venous pumps of the hand: their clinical importance. J Hand Surg 21B:595–599

    Google Scholar 

  • Smith CJ, Havenith G (2011) Body mapping of sweating patterns in males athletes in mild exercise-induced hyperthermia. Eur J Appl Physiol 111:1391–1404

    PubMed  Google Scholar 

  • Smith CJ, Machado-Moreira CA, Plant G, Hodder S, Havenith G, Taylor NAS (2013) Design data for footwear: sweating distribution on the human foot. Int J Cloth Sci Technol 25:43–58

    Google Scholar 

  • Spealman CR (1945) Effect of ambient air temperature and of hand temperature on blood flow in hands. Am J Physiol 145:218–222

    PubMed  CAS  Google Scholar 

  • Standring S (2008) Gray’s anatomy: the anatomical basis of clinical practice, 40th edn. Churchill Livingstone/Elsevier, Edinburgh

    Google Scholar 

  • Starling EH (1896) On the absorption of fluids from the connective tissue spaces. J Physiol 19:312–326

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stocks JM, Taylor NAS, Tipton MJ, Greenleaf JE (2004) Human physiological responses to cold exposure. Aviat Space Environ Med 75:444–457

    PubMed  Google Scholar 

  • Strutton DR, Kowalski JW, Glaser DA, Stang PE (2004) US prevalence of hyperhidrosis and impact on individuals with axillary hyperhidrosis: results from a national survey. J Am Acad Dermatol 51:241–248

    PubMed  Google Scholar 

  • Sucquet JP (1862) Anatomie et physiologie. Circulation du sang. D’une circulation derivative dans les membres et dans la tête chez l’homme. Delahaye, Paris

  • Tattersall GJ, Andrade DV, Abe AS (2009) Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science 325:468–472

    PubMed  CAS  Google Scholar 

  • Taylor NAS (2006) Ethnic differences in thermoregulation: genotypic versus phenotypic heat adaptation. J Therm Biol 31:90–104

    Google Scholar 

  • Taylor NAS (2014) Human heat adaptation. Compr Physiol 4:325–365

    PubMed  Google Scholar 

  • Taylor NAS, Machado-Moreira CA (2013) Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans. Extrem Physiol Med 2:4

    PubMed  PubMed Central  Google Scholar 

  • Taylor WF, Johnson JM, O’Leary D, Park MK (1984) Effect of high local temperature on reflex cutaneous vasodilation. J Appl Physiol 57:191–196

    PubMed  CAS  Google Scholar 

  • Taylor NAS, Allsopp NK, Parkes DG (1995) Preferred room temperature of young versus aged males: the influence of thermal sensation, thermal comfort and affect. J Gerontol A Biol Sci Med Sci 50:M216–M221

    PubMed  CAS  Google Scholar 

  • Taylor NAS, Caldwell JN, Mekjavic IB (2006) The sweating foot: local differences in sweat secretion during exercise-induced hyperthermia. Aviat Space Environ Med 77:1020–1027

    PubMed  Google Scholar 

  • Taylor NAS, Caldwell JN, van den Heuvel AMJ, Patterson MJ (2008) To cool, but not too cool: that is the question: immersion cooling for hyperthermia. Med Sci Sports Exerc 40:1962–1969

    PubMed  Google Scholar 

  • Teague RS, Ranson SW (1936) The role of the anterior hypothalamus in temperature regulation. Am J Physiol 117:562–570

    Google Scholar 

  • Thomas PE, Korr IM (1957) Relationship between sweat gland activity and electrical resistance of the skin. J Appl Physiol 10:505–510

    PubMed  CAS  Google Scholar 

  • Thompson ML (1954) A comparison between the number and distribution of functioning eccrine glands in Europeans and Africans. J Physiol 123:225–233

    Google Scholar 

  • Tipton MJ, Allsopp A, Balmi PJ, House JR (1993) Hand immersion as a method of cooling and rewarming: a short review. J Royal Navy Med Serv 79:125–131

    CAS  Google Scholar 

  • Tipton MJ, Wakabayashi H, Barwood MJ, Eglin CM, Mekjavic IB, Taylor NAS (2013) Habituation of the metabolic and ventilatory responses to cold-water immersion in humans. J Therm Biol 38:24–31

    PubMed  Google Scholar 

  • Toda Y (1967) Measurement and regional distribution of active sweat glands in Indonesians. Kobe J Med Sci 13:157–164

    PubMed  CAS  Google Scholar 

  • Tronstad C, Gjein GE, Grimnes S, Martinsen ØG, Krogstad A-L, Fosse E (2008) Electrical measurement of sweat activity. Physiol Meas 29:S407–S415

    PubMed  Google Scholar 

  • Vallerand AL, Savourey G, Hanniquet A, Bittel JHM (1992) How should body heat storage be determined in humans: by thermometry or calorimetry? Eur J Appl Physiol 65:286–294

    CAS  Google Scholar 

  • van Beaumont W, Bullard RW (1963) Sweating: its rapid response to muscular work. Science 141:643–646

    Google Scholar 

  • van Beaumont W, Bullard RW, Banerjee MR (1966) Observations on human sweating by resistance hygrometry. Dermatol Dig pp 75–87

  • van der Struijs NR, van Es EM, Raymann RJ, Daanen HAM (2008) Finger and toe temperatures on exposure to cold water and cold air. Aviat Space Environ Med 79:941–946

    PubMed  Google Scholar 

  • van Duinen H, Gandevia SC (2011) Constraints for control of the human hand. J Physiol 589:5583–5593

    PubMed  PubMed Central  Google Scholar 

  • Vorkamp T, Foo FJ, Khan S, Schmitto JD, Wilson P (2010) Hyperhidrosis: evolving concepts and a comprehensive review. Surgeon 8:287–292

    PubMed  Google Scholar 

  • Wade CE, Dacanay S, Smith RN (1979) Regional heat loss in resting man during immersion in 25.2 °C water. Aviat Space Environ Med 50:590–593

    PubMed  CAS  Google Scholar 

  • Wang WJ, Crompton RH (2004) Analysis of the human and ape foot during bipedal standing with implications for the evolution of the foot. J Biomech 37:1831–1836

    PubMed  CAS  Google Scholar 

  • Webb P (1992) Temperatures of skin, subcutaneous tissue, muscle and core in resting men in cold, comfortable and hot conditions. Eur J Appl Physiol 64:471–476

    CAS  Google Scholar 

  • Webb-Peploe MM, Shepherd JT (1968) Response of large hindlimb veins of the dog to sympathetic nerve stimulation. Am J Physiol 215:299–307

    PubMed  CAS  Google Scholar 

  • Weinbaum S, Jiji LM, Lemons DE (1984) Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer part I: anatomical foundation and model conceptualization. J Biomech Eng 106:321–330

    PubMed  CAS  Google Scholar 

  • Weiner JS (1945) The regional distribution of sweating. J Physiol 104:32–40

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wenger CB, Roberts MF, Nadel ER, Stolwijk JAJ (1975) Thermoregulatory control of finger blood flow. J Appl Physiol 38:1078–1082

    PubMed  CAS  Google Scholar 

  • Werner J, Heising M (1990) Consequences of partial body warming and cooling for the drives of local sweat rate. Eur J Appl Physiol 60:300–304

    CAS  Google Scholar 

  • Werner J, Reents T (1980) A contribution to the topography of temperature regulation in man. Eur J Appl Physiol 45:87–94

    CAS  Google Scholar 

  • Werner J, Mekjavic IB, Taylor NAS (2008) Concepts in physiological regulation: a thermoregulatory perspective. In: Taylor NAS, Groeller H (eds) Physiological bases of human performance during work and exercise. Churchill Livingstone Elsevier, Edinburgh, pp 325–340

    Google Scholar 

  • Wilcott RC (1966) Adaptive value of arousal sweating and the epidermal mechanism related to skin potential and skin resistance. Psychophysiology 2:249–262

    PubMed  CAS  Google Scholar 

  • Wilkins RW, Doupe J, Newman HW (1938) The rate of blood flow in normal fingers. Clin Sci 3:403–411

    Google Scholar 

  • Willis I, Harris DR, Moretz W (1973) Normal and abnormal variations in eccrine sweat gland distribution. J Investig Dermatol 60:98–103

    PubMed  CAS  Google Scholar 

  • Wilson O, Goldman RF (1970) Role of air temperature and wind in the time necessary for a finger to freeze. J Appl Physiol 29:658–664

    PubMed  CAS  Google Scholar 

  • Wyndham CH, Wilson-Dickson WG (1951) Physiological responses of hands and feet to cold in relation to body temperature. J Appl Physiol 4:199–207

    PubMed  CAS  Google Scholar 

  • Young RW (2003) Evolution of the human hand: the role of throwing and clubbing. J Anat 202:165–174

    PubMed  PubMed Central  Google Scholar 

  • Yousef MK, Dill DB (1974) Sweat rate and concentration of chloride in hand and body sweat in desert walks: male and female. J Appl Physiol 38:82–85

    Google Scholar 

  • Yu C-Y, Tu H–H (2009) Foot surface area database and estimation formula. Appl Ergon 40:767–774

    PubMed  Google Scholar 

  • Yu C-Y, Lin C-H, Yang Y-H (2010) Human body surface area database and estimation formula. Burns 36:616–629

    PubMed  Google Scholar 

  • Zander J, Morrison JB (2008) Effects of pressure, cold and gloves on hand skin temperature and manual performance of divers. Eur J Appl Physiol 104:237–244

    PubMed  Google Scholar 

  • Zhang S-X, Schmidt H-M (1993) Clinical anatomy of the subcutaneous veins in the dorsum of the hand. Ann Anat 175:381–384

    PubMed  CAS  Google Scholar 

  • Zhong J, Asker CL, Salerud EG (2000) Imaging, image processing and pattern analysis of skin capillary ensembles. Skin Res Technol 6:45–57

    PubMed  Google Scholar 

  • Zimmerman BG (1966) Separation of responses of arteries and veins to sympathetic stimulation. Circ Res 18:429–436

    PubMed  CAS  Google Scholar 

  • Zotterman Y (1959) Thermal sensations. In: Field J (ed) Handbook of physiology, vol 1. Neurophysiology, American Physiological Society, Washington DC, pp 431–458

Download references

Acknowledgments

Christiano Machado-Moreira was supported by a Doctoral scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Ministry of Education, Brazil). Joanne Caldwell and Anne van den Heuvel were supported by Australian Postgraduate Awards (Department of Innovation, Industry, Science and Research, Australia). The research and associated scholastic activities summarised within this review were supported, in part, by grants from the Australian Research Council, Defence Science and Technology Organisation (Australia), the Ministry of Defence (Republic of Slovenia) and W.L. Gore and Associates GmbH (Germany).

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel A. S. Taylor.

Additional information

Communicated by George Havenith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, N.A.S., Machado-Moreira, C.A., van den Heuvel, A.M.J. et al. Hands and feet: physiological insulators, radiators and evaporators. Eur J Appl Physiol 114, 2037–2060 (2014). https://doi.org/10.1007/s00421-014-2940-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2940-8

Keywords

Navigation