Skip to main content

Advertisement

Log in

Energy expenditure of extreme competitive mountaineering skiing

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Multi-hour ski mountaineering energy balance may be negative and intake below recommendations.

Methods

Athletes on the ‘Patrouille des Glaciers’ racecourses (17 on course Z, 27 km, +2,113 m; 11 on course A, 26 km, +1,881 m) volunteered. Pre-race measurements included body mass, stature, VO2max, and heart rate (HR) vs VO2 at simulated altitude; race measurements HR, altitude, incline, location, and food and drink intake (A). Energy expenditure (EE) was calculated from altitude corrected HR derived VO2.

Results

Race time was 5 h 7 min ± 44 min (mean ± SD, Z) and 5 h 51 min ± 53 min (A). Subjects spent 19.2 ± 3.2 MJ (Z), respectively, 22.6 ± 2.9 MJ (A) during the race. Energy deficit was −15.5 ± 3.9 MJ (A); intake covered 20 ± 7 % (A). Overall energy cost of locomotion (EC) was 9.9 ± 1.3 J m−1 kg−1 (Z), 8.0 ± 1.0 J m−1 kg−1 (A). Uphill EC was 11.7 ± 1 J m−1 kg−1 (Z, 13 % slope) and 15.7 ± 2.3 J m−1 kg−1 (A, 19 % slope). Race A subjects lost −1.5 ± 1.1 kg, indicating near euhydration. Age, body mass, gear mass, VO2max and EC were significantly correlated with performance; energy deficit was not.

Conclusions

Energy expenditure and energy deficit of a multi-hour ski mountaineering race are very high and energy intake is below recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACSM:

American College of Sport Medicine

EC:

Energy cost

EE:

Energy expenditure

HR:

Heart rate

HRmax :

Maximal heart rate

HRmod :

Modified heart rate

HRres :

Heart rate reserve

MET:

Metabolic equivalent of task

mvert :

Vertical meter

s 1 :

Speed 1

s 2 :

Speed 2

s 3 :

Speed 3

SD:

Standard deviation

VO2 :

Oxygen consumption

VO2max :

Maximal oxygen consumption

vt2 :

Ventilatory threshold 2

References

  • Achten J, Jeukendrup AE (2003) Heart rate monitoring: applications and limitations. Sports Med 33:517–538

    Article  PubMed  Google Scholar 

  • Ardigo LP, Saibene F, Minetti AE (2003) The optimal locomotion on gradients: walking, running or cycling? Eur J Appl Physiol 90:365–371. doi:10.1007/s00421-003-0882-7

    Article  PubMed  CAS  Google Scholar 

  • Beneke R, Hutler M (2005) The effect of training on running economy and performance in recreational athletes. Med Sci Sports Exerc 37:1794–1799

    Article  PubMed  Google Scholar 

  • Black AE, Coward WA, Cole TJ, Prentice AM (1996) Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements. Eur J Clin Nutr 50:72–92

    PubMed  CAS  Google Scholar 

  • Brooks GA et al (1992) Muscle accounts for glucose disposal but not blood lactate appearance during exercise after acclimatization to 4,300 m. J Appl Physiol (1985) 72:2435–2445

    CAS  Google Scholar 

  • Butterfield GE, Gates J, Fleming S, Brooks GA, Sutton JR, Reeves JT (1992) Increased energy intake minimizes weight loss in men at high altitude. J Appl Physiol (1985) 72:1741–1748

    CAS  Google Scholar 

  • di Prampero PE (1986) The energy cost of human locomotion on land and in water. Int J Sports Med 7:55–72. doi:10.1055/s-2008-1025736

    Article  PubMed  Google Scholar 

  • Diamond J (1991) Evolutionary design of intestinal nutrient: enough but not too much. News Physiol Sci 6(92):96

    Google Scholar 

  • Diaz E et al (2010) Cell damage, antioxidant status, and cortisol levels related to nutrition in ski mountaineering during a two-day race. J Sports Sci Med 9:338–346

    PubMed  PubMed Central  Google Scholar 

  • Duc S, Cassirame J, Durand F (2011) Physiology of ski mountaineering racing. Int J Sports Med 32:856–863. doi:10.1055/s-0031-1279721

    Article  PubMed  CAS  Google Scholar 

  • Esteve-Lanao J, Lucia A, deKoning JJ, Foster C (2008) How do humans control physiological strain during strenuous endurance exercise? PLoS One 3:e2943. doi:10.1371/journal.pone.0002943

    Article  PubMed  PubMed Central  Google Scholar 

  • Gatterer H, Schenk K, Wille M, Raschner C, Faulhaber M, Ferrari M, Burtscher M (2013) Race performance and exercise intensity of male amateur mountain runners during a multistage mountain marathon competition are not dependent on muscle strength loss or cardiorespiratory fitness. J Strength Cond Res 27:2149–2156. doi:10.1519/JSC.0b013e318279f817

    Article  PubMed  Google Scholar 

  • Gimenez P, Kerherve H, Messonnier LA, Feasson L, Millet GY (2013) Changes in the energy cost of running during a 24-h treadmill exercise. Med Sci Sports Exerc 45:1807–1813. doi:10.1249/MSS.0b013e318292c0ec

    Article  PubMed  Google Scholar 

  • Gonzalez RR, Cheuvront SN, Montain SJ, Goodman DA, Blanchard LA, Berglund LG, Sawka MN (2009) Expanded prediction equations of human sweat loss and water needs. J Appl Physiol (1985) 107:379–388. doi:10.1152/japplphysiol.00089.2009

    Article  CAS  Google Scholar 

  • Haddad M, Chaouachi A, del Wong P, Castagna C, Hue O, Impellizzeri FM, Chamari K (2014) Influence of exercise intensity and duration on perceived exertion in adolescent Taekwondo athletes. Eur J Sport Sci 14(Suppl 1):S275–S281. doi:10.1080/17461391.2012.691115

    Article  PubMed  Google Scholar 

  • Jeukendrup AE (2011) Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sports Sci 29(Suppl 1):S91–S99. doi:10.1080/02640414.2011.610348

    Article  PubMed  Google Scholar 

  • Kayser B (1994) Nutrition and energetics of exercise at altitude. Theory and possible practical implications. Sports Med 17:309–323

    Article  PubMed  CAS  Google Scholar 

  • Keytel LR, Goedecke JH, Noakes TD, Hiiloskorpi H, Laukkanen R, van der Merwe L, Lambert EV (2005) Prediction of energy expenditure from heart rate monitoring during submaximal exercise. J Sports Sci 23:289–297. doi:10.1080/02640410470001730089

    Article  PubMed  CAS  Google Scholar 

  • Kimber NE, Ross JJ, Mason SL, Speedy DB (2002) Energy balance during an ironman triathlon in male and female triathletes. Int J Sport Nutr Exerc Metab 12:47–62

    PubMed  Google Scholar 

  • Knechtle B, Knechtle P, Wirth A, Alexander Rüst C, Rosemann T (2012) A faster running speed is associated with a greater body weight loss in 100-km ultra-marathoners. J Sports Sci 30:1131–1140. doi:10.1080/02640414.2012.692479

    Article  PubMed  Google Scholar 

  • Kruseman M, Bucher S, Bovard M, Kayser B, Bovier PA (2005) Nutrient intake and performance during a mountain marathon: an observational study. Eur J Appl Physiol 94:151–157. doi:10.1007/s00421-004-1234-y

    Article  PubMed  CAS  Google Scholar 

  • Lara B, Salinero JJ, Del Coso J (2014) The relationship between age and running time in elite marathoners is U-shaped. Age (Dordr) 36(2):1003–1008. doi:10.1007/s11357-013-9614-z

    Article  Google Scholar 

  • Mawson JT, Braun B, Rock PB, Moore LG, Mazzeo R, Butterfield GE (2000) Women at altitude: energy requirement at 4,300 m. J Appl Physiol (1985) 88:272–281

    CAS  Google Scholar 

  • Meyer NL, Manore MM, Helle C (2011) Nutrition for winter sports. J Sports Sci 29(Suppl 1):S127–S136. doi:10.1080/02640414.2011.574721

    Article  PubMed  Google Scholar 

  • Minetti AE (1995) Optimum gradient of mountain paths. J Appl Physiol 79:1698–1703

    PubMed  CAS  Google Scholar 

  • Montain SJ, Coyle EF (1992) Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol (1985) 73:1340–1350

    CAS  Google Scholar 

  • Richalet JP (2012) Altitude and the cardiovascular system. Presse Med 41:638–643. doi:10.1016/j.lpm.2012.02.003

    Article  PubMed  Google Scholar 

  • Rodriguez NR, Di Marco NM, Langley S (2009) American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc 41:709–731. doi:10.1249/MSS.0b013e31890eb86

    Article  PubMed  Google Scholar 

  • Saibene F, Minetti AE (2003) Biomechanical and physiological aspects of legged locomotion in humans. Eur J Appl Physiol 88:297–316. doi:10.1007/s00421-002-0654-9

    Article  PubMed  Google Scholar 

  • Saris WH, van Erp-Baart MA, Brouns F, Westerterp KR, ten Hoor F (1989) Study on food intake and energy expenditure during extreme sustained exercise: the Tour de France. Int J Sports Med 10(Suppl 1):S26–S31. doi:10.1055/s-2007-1024951

    Article  PubMed  Google Scholar 

  • Tartaruga MP, Mota CB, Peyre-Tartaruga LA, Brisswalter J (2013) Scale Model on performance prediction in recreational and elite endurance runners. Int J Sports Physiol Perform 9(4):650–655

    Article  PubMed  Google Scholar 

  • Tosi P, Leonardi A, Schena F (2009) The energy cost of ski mountaineering: effects of speed and ankle loading. J Sports Med Phys Fit 49:25–29

    CAS  Google Scholar 

  • Tosi P, Leonardi A, Zerbini L, Rosponi A, Schena F (2010) Energy cost and efficiency of ski mountaineering. A laboratory study J Sports Med Phys Fitness 50:400–406 (R40103056)

    CAS  Google Scholar 

  • Turnbull JR, Kilding AE, Keogh JWL (2009) Physiology of alpine skiing. Scand J Med Sci Sports 19(2):146–155. doi:10.1111/j.1600-0838.2009.00901.x

    Article  PubMed  CAS  Google Scholar 

  • Vernillo G, Agnello L, Drake A, Fiorella P, Piacentini MF, La Torre A (2012) Cardiovascular responses during an indoor race walking competition. J Sports Med Phys Fit 52:589–595

    CAS  Google Scholar 

  • Wasserman K, McIlroy MB (1964) Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol 14:844–852

    Article  PubMed  CAS  Google Scholar 

  • Westerterp KR, Meijer GA, Janssen EM, Saris WH, Ten Hoor F (1992) Long-term effect of physical activity on energy balance and body composition. Br J Nutr 68:21–30

    Article  PubMed  CAS  Google Scholar 

  • Wicks JR, Oldridge NB, Nielsen LK, Vickers CE (2011) HR index—a simple method for the prediction of oxygen uptake. Med Sci Sports Exerc 43:2005–2012. doi:10.1249/MSS.0b013e318217276e

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Swiss federal office for sports. We thank Philippe Vuistiner, Vincent Favre, Joachim Staub, Olivier Dériaz and the team of the Swiss Olympic Medical Center of Sion for their excellent technical help. We are also very grateful to the subjects for their precious time in participating in the study.

Conflict of interest

There are no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengt Kayser.

Additional information

Communicated by Michael Lindinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praz, C., Léger, B. & Kayser, B. Energy expenditure of extreme competitive mountaineering skiing. Eur J Appl Physiol 114, 2201–2211 (2014). https://doi.org/10.1007/s00421-014-2939-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2939-1

Keywords

Navigation