Skip to main content
Log in

The separate and combined effects of hypoxia and sustained recumbency/inactivity on sleep architecture

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The objective was to determine the separate and combined effects of hypoxia and inactivity/unloading on sleep architecture during a 10-day period of confinement.

Methods

Ten subjects participated in three 10-day trials in random order: hypoxic ambulatory (HAMB), hypoxic bedrest (HBR), and normoxic bedrest (NBR). During the HAMB and HBR trials, subjects were confined to a hypoxic facility. The hypoxia profile was: simulated altitude of 2,990 m on day 1, 3,380 m on day 2, and 3,881 m on day 3. In the NBR and HBR trials, subjects maintained a horizontal position throughout the confinement period. During each trial, sleep polysomnography was conducted one night prior to (baseline; altitude of facility is 940 m) and on the first (NT1, altitude 2,990 m) and tenth (NT10, altitude 3,881 m) night of the 10-day intervention.

Results

Average time in sleep stage 1 decreased from NT1 to NT10 irrespective of trial. Overall incidence and time spent in periodic breathing increased from NT1 to NT10 in both HAMB and HBR. During NT1, both HAMB and HBR reduced slow-wave sleep and increased light sleep, whereas NBR and HBR increased the number of awakenings/night. There were fewer awakenings during HAMB than NBR.

Conclusions

Acute exposure to both hypoxia and bedrest (HBR) results in greater sleep fragmentation due to more awakenings attributed to bedrest, and lighter sleep as a result of reduced slow wave sleep caused by the hypoxic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AHI:

Apnoea–hypopnoea index

AMS:

Acute mountain sickness

ANOVA:

Analysis of variance

CI:

Confidence intervals

ECG:

Electrocardiography

EEG:

Electroencephalography

EMG:

Electromyography

EOG:

Electrooculography

EVA:

Extravehicular activities

FO2 :

Fraction of oxygen

FIO2 :

Fraction of inspired oxygen

HAMB:

Hypoxic ambulatory condition

HBR:

Hypoxic bedrest condition

ISS:

International Space Station

LLMS:

Lake Louise Mountain Scores

N1:

Stage 1 non-rapid eye movement sleep

N2:

Stage 2 non-rapid eye movement sleep

NBR:

Normoxic bedrest condition

NREM:

Non-rapid eye movement sleep

NT1:

Night 1

NT10:

Night 10

PIO2 :

Partial pressure of inspired oxygen

PLM:

Periodic limb movements

PSG:

Polysomnography

REM:

Rapid eye movement sleep

SWS:

Slow wave sleep

WASO:

Wake after sleep onset

References

  • Bartsch P, Saltin B (2008) General introduction to altitude adaptation and mountain sickness. Scand J Med Sci Sports 18(Suppl 1):1–10. doi:10.1111/j.1600-0838.2008.00827.x

    PubMed  Google Scholar 

  • Berssenbrugge AD, Dempsey JA, Skatrud JB (1984) Effects of sleep state on ventilatory acclimatization to hypoxia in humans. J Appl Physiol 57(4):1089–1096

    CAS  PubMed  Google Scholar 

  • Bodkin DK, Escalera P, Bocam KJ (2006) A human Lunar surface base and infrastructure solution (AIAA 2006-7336). In: 2nd International Space Architecture Symposium (SAS 2006), AIAA Space 2006 Conference & Exposition, San Jose, California, USA. American Institute of Aeronautics and Astronautics, Reston, Virginia

  • de Aquino Lemos V, Antunes HK, dos Santos RV, Lira FS, Tufik S, de Mello MT (2012) High altitude exposure impairs sleep patterns, mood, and cognitive functions. Psychophysiology 49(9):1298–1306. doi:10.1111/j.1469-8986.2012.01411.x

    Article  PubMed  Google Scholar 

  • Debevec T, McDonnell AC, MacDonald IA, Eiken O, Mekjavic IB (2014) Whole body and regional body composition changes following 10-day hypoxic confinement and unloading-inactivity. Appl Physiol Nutr Metab 39:386–395. doi:10.1139/apnm-2013-0278

    Article  CAS  PubMed  Google Scholar 

  • Dijk DJ, Neri DF, Wyatt JK, Ronda JM, Riel E, Ritz-De Cecco A, Hughes RJ, Elliott AR, Prisk GK, West JB, Czeisler CA (2001) Sleep, performance, circadian rhythms, and light–dark cycles during two space shuttle flights. Am J Physiol Regul Integr Comp Physiol 281(5):R1647–R1664

    CAS  PubMed  Google Scholar 

  • Frost JD Jr, Shumate WH, Salamy JG, Booher CR (1976) Sleep monitoring: the second manned Skylab mission. Aviat Space Environ Med 47(4):372–382

    PubMed  Google Scholar 

  • Gundel A, Polyakov VV, Zulley J (1997) The alteration of human sleep and circadian rhythms during spaceflight. J Sleep Res 6(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Hoshikawa M, Uchida S, Sugo T, Kumai Y, Hanai Y, Kawahara T (2007) Changes in sleep quality of athletes under normobaric hypoxia equivalent to 2,000-m altitude: a polysomnographic study. J Appl Physiol 103(6):2005–2011. doi:10.1152/japplphysiol.00315.2007

    Article  PubMed  Google Scholar 

  • Iber C, Ancoli-Israel S, Chesson AL, Quan SF, for the American Academy of Sleep Medicine (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specification. AASM, Westchester

    Google Scholar 

  • Jafarian S, Gorouhi F, Taghva A, Lotfi J (2008) High-altitude sleep disturbance: results of the Groningen Sleep Quality Questionnaire survey. Sleep Med 9(4):446–449. doi:10.1016/j.sleep.2007.06.017

    Article  PubMed  Google Scholar 

  • Johnson PL, Edwards N, Burgess KR, Sullivan CE (2010) Sleep architecture changes during a trek from 1,400 to 5,000 m in the Nepal Himalaya. J Sleep Res 19(1 Pt 2):148–156. doi:10.1111/j.1365-2869.2009.00745.x

    Article  PubMed  Google Scholar 

  • Karinen H, Peltonen J, Tikkanen H (2008) Prevalence of acute mountain sickness among Finnish trekkers on Mount Kilimanjaro, Tanzania: an observational study. High Alt Med Biol 9(4):301–306. doi:10.1089/ham.2008.1008

    Article  PubMed  Google Scholar 

  • Komada Y, Inoue Y, Mizuno K, Tanaka H, Mishima K, Sato H, Shirakawa S (2006) Effects of acute simulated microgravity on nocturnal sleep, daytime vigilance, and psychomotor performance: comparison of horizontal and 6 degrees head-down bed rest. Percept Mot Skills 103(2):307–317

    Article  PubMed  Google Scholar 

  • Kushida CA (2006) Countermeasures for sleep loss and deprivation. Curr Treat Options Neurol 8(5):361–366

    Article  PubMed  Google Scholar 

  • Miller JC, Horvath SM (1977) Sleep at altitude. Aviat Space Environ Med 48(7):615–620

    CAS  PubMed  Google Scholar 

  • Mizuno K, Asano K, Okudaira N (1993) Sleep and respiration under acute hypobaric hypoxia. Jpn J Physiol 43(2):161–175

    Article  CAS  PubMed  Google Scholar 

  • Monk TH, Buysse DJ, Billy BD, Kennedy KS, Kupfer DJ (1997) The effects on human sleep and circadian rhythms of 17 days of continuous bedrest in the absence of daylight. Sleep 20(10):858–864

    CAS  PubMed  Google Scholar 

  • Monk TH, Buysse DJ, Billy BD, Kennedy KS, Willrich LM (1998) Sleep and circadian rhythms in four orbiting astronauts. J Biol Rhythm 13(3):188–201

    Article  CAS  Google Scholar 

  • Nussbaumer-Ochsner Y, Ursprung J, Siebenmann C, Maggiorini M, Bloch KE (2012) Effect of short-term acclimatization to high altitude on sleep and nocturnal breathing. Sleep 35(3):419–423. doi:10.5665/sleep.1708

    PubMed Central  PubMed  Google Scholar 

  • Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J (2007) From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 101(2):143–194. doi:10.1007/s00421-007-0474-z

    Article  CAS  PubMed  Google Scholar 

  • Reite M, Jackson D, Cahoon RL, Weil JV (1975) Sleep physiology at high altitude. Electroencephalogr Clin Neurophysiol 38(5):463–471

    Article  CAS  PubMed  Google Scholar 

  • Salvaggio A, Insalaco G, Marrone O, Romano S, Braghiroli A, Lanfranchi P, Patruno V, Donner CF, Bonsignore G (1998) Effects of high-altitude periodic breathing on sleep and arterial oxyhaemoglobin saturation. Eur Respir J 12(2):408–413. doi:10.1183/09031936.98.12020408

    Article  CAS  PubMed  Google Scholar 

  • Scheuring R, Conkin J, Jones JA, Gernhard ML (2008) Risk assessment of physiological effects of atmospheric composition and pressure in Constellation vehicles. Acta Astronaut 63:727–739. doi:10.1016/j.actaastro.2008.02.009

    Article  Google Scholar 

  • Szymczak RK, Sitek EJ, Slawek JW, Basinski A, Sieminski M, Wieczorek D (2009) Subjective sleep quality alterations at high altitude. Wilderness Environ Med 20(4):305–310. doi:10.1580/1080-6032-020.004.0305

    Article  PubMed  Google Scholar 

  • Windsor JS, Rodway GW (2012) Sleep disturbance at altitude. Curr Opin Pulm Med 18(6):554–560. doi:10.1097/MCP.0b013e328359129f

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the participants for completing the demanding protocol, to Ms. Judita Jeran and Dr. Andrej Pangerc for their assistance during data collection and Boštjan Kastelic, dipl.ing. for technical support. This research was supported by the European Space Agency (ESA) Programme for European Cooperating States (ESTEC/Contract No. 40001043721/11/NL/KML: Planetary Habitat Simulation), and the Slovene Research Agency (Contract No. L3-3654 and No. P3-0338).

Ethical standard

The study was conducted following the approval of the protocol by the National Committee for Medical Ethics at the Ministry of Health of the Republic of Slovenia, and conformed with the Declaration of Helsinki guidelines.

Conflict of interest

The authors confirm they have no personal or financial conflicts of interest with the research communicated herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Rojc.

Additional information

Communicated by Dick F. Stegeman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojc, B., Morrison, S.A., Eiken, O. et al. The separate and combined effects of hypoxia and sustained recumbency/inactivity on sleep architecture. Eur J Appl Physiol 114, 1973–1981 (2014). https://doi.org/10.1007/s00421-014-2909-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2909-7

Keywords

Navigation