Effects of dawn simulation on markers of sleep inertia and post-waking performance in humans



To examine the effects of a simulated dawn during the last 30 min of sleep on the subsequent dissipation of sleep inertia and changes in simulated work and physical performance.


Eight participants, who reported difficulty with morning waking, were administered in a random order to a control (C) and a dawn simulation (DS) trial (starting 30 min prior to waking). Subjective ratings of sleep quality and alertness were obtained alongside measures of cognitive performance (addition and reaction time tasks measured at 5, 30 and 75 min after waking at habitual workday times). Physical performance was also measured 35 min after waking using a self-paced cycling protocol.


After waking in DS, perceived sleep quality was 1.16 ± 0.89 (p = 0.01) points higher compared with C. Ratings of alertness were significantly higher in DS than C throughout the testing period (p = 0.04). Cognitive performance improved in both trials as time awake increased (p < 0.0005). On average, participants completed a greater number of additions in DS compared with C (69.5 ± 15.3 vs 66.9 ± 16.7, p = 0.03). Reaction times were also faster in DS compared with C (0.81 ± 0.07 s vs 0.86 ± 0.06 s, p < 0.0005). The self-paced time-trial was completed 21.4 s (4.7 %) quicker in DS (p = 0.07).


These data provide the first evidence that light exposure during the last 30 min of habitual sleep can increase subjective alertness and improve both cognitive and physical performance after waking.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


95 % CI:

95 % Confidence interval


Control condition


Dawn simulation condition


Enzyme-linked immunosorbent assay


Karolinska sleepiness scale


Rating of perceived exertion




Standard deviation

T c :

Intestinal temperature


Visual analogue scale


  1. Åkerstedt T, Gillberg M (1990) Subjective and objective sleepiness in the active individual. Int J Neurosci 52:29–37

    PubMed  Article  Google Scholar 

  2. Altareki N, Drust B, Atkinson G, Cable T, Gregson W (2009) Effects of environmental heat stress (35°C) with simulated air movement on the thermoregulatory responses during a 4-km cycling time trial. Int J Sports Med 30:9–15

    CAS  PubMed  Article  Google Scholar 

  3. Ando K, Kripke DF (1996) Light attenuation by the human eyelid. Biol Psychiatry 39:22–25

    CAS  PubMed  Article  Google Scholar 

  4. Ballinger GA (2004) Using generalized estimating equations for longitudinal data analysis. Organ Res Methods 7:127–150

    Article  Google Scholar 

  5. Benloucif S, Burgess HJ, Klerman EB, Lewy AJ, Middleton B, Murphy PJ, Parry BL, Revell VL (2008) Measuring melatonin in humans. J Clin Sleep Med 4:66–69

    PubMed Central  PubMed  Google Scholar 

  6. Bergh U, Ekblom B (1979) Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol Scand 107:33–37

    CAS  PubMed  Article  Google Scholar 

  7. Bierman A, Figueiro MG, Rea MS (2011) Measuring and predicting eyelid spectral transmittance. J Biomed Opt 16:1–8

    Article  Google Scholar 

  8. Bishop D (2003) Warm up I: potential mechanisms and the effects of passive warm up on exercise performance. Sports Med 33:439–454

    PubMed  Article  Google Scholar 

  9. Bland JM, Altman DG (1995) Calculating correlation coefficients with repeated observations: part 1–correlation within subjects. BMJ 310:446

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. Borg GAV (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381

    CAS  PubMed  Google Scholar 

  11. Brooks A, Lack L (2006) A brief afternoon nap following nocturnal sleep restriction: which nap duration is most recuperative? Sleep 29:831–840

    PubMed  Google Scholar 

  12. Cajochen C, Krauchi K, Wirz-Justice A (2003) Role of melatonin in the regulation of human circadian rhythms and sleep. J Neuroendocrinol 15:432–437

    CAS  PubMed  Article  Google Scholar 

  13. Danilenko KV, Wirz-Justice A, Kräuchi K, Cajochen C, Weber JM, Fairhurst S, Terman M (2000) Phase advance after one or three simulated dawns in humans. Chronobiol Int 17:659–668

    CAS  PubMed  Article  Google Scholar 

  14. Figueiro MG, Rea MS (2012) Preliminary evidence that light through the eyelids can suppress melatonin and phase shift dim light melatonin onset. BMC Res Notes 5:221–229

    PubMed Central  PubMed  Article  Google Scholar 

  15. Gabel V, Maire M, Reichert CF, Chellappa SL, Schmidt C, Hommes V, Viola AU, Cajochen C (2013) Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels. Chronobiol Int 30:988–997

    CAS  PubMed  Article  Google Scholar 

  16. Giménez MC, Hessels M, van de Werken M, de Vries B, Beersma DGM, Gordijn MCM (2010) Effects of artificial dawn on subjective ratings of sleep inertia and dim light melatonin onset. Chronobiol Int 27:1219–1241

    PubMed  Article  Google Scholar 

  17. Hancock PA, Vazmatzidis I (2003) Effects of heat stress on cognitive performance: the current state of knowledge. Int J Hyperth 19:355–372

    CAS  Article  Google Scholar 

  18. Horne JA, Ostberg O (1976) A self-assessment questionnaire to determine morningness–eveningness in human circadian rhythms. Int J Chronobiol 4:97–110

    CAS  PubMed  Google Scholar 

  19. Jewett ME, Wyatt JK, Ritz-De Cecco A, Khalsa SB, Dijk DJ, Czeisler CA (1999) Time course of sleep inertia dissipation in human performance and alertness. J Sleep Res 8:1–8

    CAS  PubMed  Article  Google Scholar 

  20. Kleitman N (1964) The evolutionary theory of sleep and wakefulness. Perspect Biol Med 7:169–178

    CAS  PubMed  Google Scholar 

  21. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP (1980) Light suppresses melatonin secretion in humans. Science 210:1267–1269

    CAS  PubMed  Article  Google Scholar 

  22. Masino SA, Dunwiddie TV (1999) Temperature-dependent modulation of excitatory transmission in hippocampal slices is mediated by extracellular adenosine. J Neurosci 19:1932–1939

    CAS  PubMed  Google Scholar 

  23. Masino S, Dunwiddie T (2000) A transient increase in temperature induces persistent potentiation of synaptic transmission in rat hippocampal slices. Neuroscience 101:907–912

    CAS  PubMed  Article  Google Scholar 

  24. Norden MJ, Avery DH (1993) A controlled study of dawn simulation in subsyndromal winter depression. Acta Psychiatr Scand 88:67–71

    CAS  PubMed  Article  Google Scholar 

  25. Ramanathan NL (1964) A new weighting system for mean surface temperature of the human body. J Appl Physiol 19:531–533

    CAS  PubMed  Google Scholar 

  26. Reilly T, Edwards B (2007) Altered sleep–wake cycles and physical performance in athletes. Physiol Behav 90:274–284

    CAS  PubMed  Article  Google Scholar 

  27. Roenneberg T, Wirz-Justice A, Merrow M (2003) Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms 18:80–90

    PubMed  Article  Google Scholar 

  28. Taillard J, Philip P, Coste O, Sagaspe P, Bioulac B (2003) The circadian and homeostatic modulation of sleep pressure during wakefulness differs between morning and evening chronotypes. J Sleep Res 12:275–282

    PubMed  Article  Google Scholar 

  29. Tassi P, Muzet A (2000) Sleep inertia. Sleep Med Rev 4:341–353

    PubMed  Article  Google Scholar 

  30. Terman M, Schlager D, Fairhurst S, Perlman B (1989) Dawn and dusk simulation as a therapeutic intervention. Biol Psychiatry 25:966–970

    CAS  PubMed  Article  Google Scholar 

  31. Thorn L, Hucklebridge F (2004) The effect of dawn simulation on the cortisol response to awakening in healthy participants. Psychoneuroendocrinology 29:925–930

    CAS  PubMed  Article  Google Scholar 

  32. Van De Werken M, Giménez MC, Vries B, Beersma DGM, Van Someren EUSJW, Gordijn M (2010) Effects of artificial dawn on sleep inertia, skin temperature, and the awakening cortisol response. J Sleep Res 19:425–435

    Article  Google Scholar 

  33. Van Marken Lichtenbelt WD, Daanen HAM, Wouters L, Fronczek R, Raymann RJEM, Severens NMW, Van Someren EJW (2006) Evaluation of wireless determination of skin temperature using iButtons. Physiol Behav 88:489–497

    PubMed  Article  Google Scholar 

  34. Wertz AT, Ronda JM, Czeisler CA, Wright KP Jr (2006) Effects of sleep inertia on cognition. JAMA 295:163–164

    CAS  PubMed  Google Scholar 

  35. Wilkinson R, Fox R, Goldsmith R, Hampton I, Lewis H (1964) Psychological and physiological responses to raised body temperature. J Appl Physiol 19:287–291

    CAS  PubMed  Google Scholar 

  36. Wittmann M, Dinich J, Merrow M, Roenneberg T (2006) Social jetlag: misalignment of biological and social time. Chronobiol Int 23:497–509

    PubMed  Article  Google Scholar 

  37. Wright KP Jr, Hull JT, Czeisler CA (2002) Relationship between alertness, performance, and body temperature in humans. Am J Physiol Regul Integr Comp Physiol 283:1370–1377

    Google Scholar 

  38. Zavada A, Gordijn MCM, Beersma DGM, Daan S, Roenneberg T (2005) Comparison of the Munich Chronotype questionnaire with the Horne-Östberg’s morningness–eveningness score. Chronobiol Int 22:267–278

    PubMed  Article  Google Scholar 

Download references


We are grateful to Lumie for providing financial support for this study. The authors have no financial interest associated with the outcome of this study and declare that they have no conflict of interest.

Author information



Corresponding author

Correspondence to Andrew Thompson.

Additional information

Communicated by Dick F. Stegeman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thompson, A., Jones, H., Gregson, W. et al. Effects of dawn simulation on markers of sleep inertia and post-waking performance in humans. Eur J Appl Physiol 114, 1049–1056 (2014). https://doi.org/10.1007/s00421-014-2831-z

Download citation


  • Artificial dawn
  • Sleep inertia
  • Performance
  • Phototherapy