Skip to main content
Log in

Prepubescent males are less susceptible to neuromuscular fatigue following resistance exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To determine if prepubescent and adult males have similar fatigue profiles following high and lower intensity knee extensions.

Methods

Ten male children and ten adults completed two sessions of three sets of high repetition (17 typical muscle endurance training) high repetition (High RM) or low repetition (seven typical strength training) maximum (Low RM) dynamic knee extensions. Voluntary and evoked contractile properties, heart rate (HR), and rating of perceived exertion (RPE) were assessed before and after each knee extension RM.

Results

Knee extension RM measures revealed that boys performed more (children set 2, 6.7 ± 0.5; set 3, 5.7 ± 0.5 vs. adult set 2, 5.2 ± 0.4; set 3, 3.5 ± 0.5; P < 0.001) repetitions, had a faster (children 39.9 ± 8.6 vs. adult 9.4 ± 3.7 bpm; P < 0.001) HR recovery and lower (6.4 ± 0.43; P < 0.001) RPE compared to adults (8.0 ± 0.4). Post-knee extension measures also revealed a smaller MVC force decrement (P < 0.001) with boys (94.3 % ±6.1 vs. 76.3 % ±4.1). Unlike adults, there were no significant decrements to children’s evoked contractile properties or EMG. The greater boys’ antagonist activation (children 125.7 % ±9.2 vs. adult: 103.5 % ±6.7; P < 0.001) post-knee extension would suggest muscle coordination changes as a primary mechanism for MVC force decrements. The lower RPE and similar agonist EMG activity may also indicate an inability of boys to perceive or produce a maximal effort.

Conclusion

Independent of High or Low RM knee extensions, boys had greater neuromuscular fatigue resistance and recovered faster than adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American College of Sports Medicine (2014) ACSM’s guidelines for exercise testing and prescription, 9th edn. Lippincott Wiliams and Wilkins, Philadelphia, pp 65–84

  • Armatas V, Bassa E, Patikas D, Kitsas I, Zangelidis G, Kotzamanidis C (2010) Neuromuscular differences between men and prepubescent boys during a peak isometric knee extension intermittent fatigue test. Pediatr Exerc Sci 22(2):205–217

    PubMed  Google Scholar 

  • Asmussen E, Mazin B (1978) Central nervous component in local muscular fatigue. Eur J Appl Physiol O 38(1):9–15

    Article  CAS  Google Scholar 

  • Aune TK, Ingvaldsen RP, Ettema GJ (2008) Effect of physical fatigue on motor control at different skill levels. Percept Mot Skills 106(2):371–386

    Article  CAS  PubMed  Google Scholar 

  • Baechle TR, Earle RW, Wathen D (2008) Essentials of strength training and conditioning. Human Kinetics Publishers, Champaign, pp 112–165

  • Barkley JE, Roemmich JN (2011) Validity of a pediatric rpe scale when different exercise intensities are completed on separate days. J Exerc Sci Fit 9(1):52–57

    Article  Google Scholar 

  • Barry BK, Enoka RM (2007) The neurobiology of muscle fatigue: 15 years later. Integr Comp Biol 47(4):465–473

    Article  PubMed  Google Scholar 

  • Bassa E, Patikas D, Kotzamanidis C (2005) Activation of antagonist knee muscles during isokinetic efforts in prepubertal and adult males. Pediatr Exerc Sci 17(2):171–181

    Google Scholar 

  • Behm DG (2004) Force maintenance with submaximal fatiguing contractions. Can J Appl Physiol 29(3):274–290

    Article  PubMed  Google Scholar 

  • Behm DG, StPierre DMM (1997) Effects of fatigue duration and muscle type on voluntary and evoked contractile properties. J Appl Physiol 82(5):1654–1661

    CAS  PubMed  Google Scholar 

  • Behm DG, Reardon G, Fitzgerald J, Drinkwater E (2002a) The effect of 5, 10, and 20 repetition maximums on the recovery of voluntary and evoked contractile properties. J Strength Cond Res 16(2):209–218

    PubMed  Google Scholar 

  • Behm DG, Whittle J, Button D, Power K (2002b) Intermuscle differences in activation. Muscle Nerve 25(2):236–243

    Article  CAS  PubMed  Google Scholar 

  • Behm DG, Faigenbaum AD, Falk B, Klentrou P (2008) Canadian society for exercise physiology position paper: resistance training in children and adolescents. Appl Physiol Nutr Me 33(3):547–561

    Article  Google Scholar 

  • Belanger AY, McComas AJ (1989) Contractile properties of human skeletal-muscle in childhood and adolescence. Eur J Appl Physiol O 58(6):563–567

    Article  CAS  Google Scholar 

  • Boisseau N, Delamarche P (2000) Metabolic and hormonal responses to exercise in children and adolescents. Sport Med 30(6):405–422

    Article  CAS  Google Scholar 

  • Chaouachi A, Chamari K, Wong P, Castagna C, Chaouachi M, Moussa-Chamari I, Behm DG (2008) Stretch and sprint training reduces stretch-induced sprint performance deficits in 13-to 15-year-old youth. Eur J Appl Physiol 104(3):515–522

    Article  CAS  PubMed  Google Scholar 

  • Chaouachi A, Haddad M, Castagna C, Wong DP, Kaouech F, Chamari K, Behm DG (2011) Potentiation and recovery following low- and high-speed isokinetic contractions in boys. Pediatr Exerc Sci 23(1):136–150

    PubMed  Google Scholar 

  • Degens H, Veerkamp JH (1994) Changes in oxidative capacity and fatigue resistance in skeletal-muscle. Int J Biochem 26(7):871–878

    Article  CAS  PubMed  Google Scholar 

  • Enoka RM, Stuart DG (1992) Neurobiology of muscle fatigue. J Appl Physiol 72(5):1631–1648

    CAS  PubMed  Google Scholar 

  • Faigenbaum AD, Milliken LA, Westcott WL (2003) Maximal strength testing in healthy children. J Strength Cond Res 17(1):162–166

    PubMed  Google Scholar 

  • Faigenbaum AD, Milliken LA, Cloutier G, Westcott WL (2004) Perceived exertion during resistance exercise by children. Percept Motor Skill 98(2):627–637

    Article  Google Scholar 

  • Faigenbaum AD, Ratamess NA, McFarland J, Kaczmarek J, Coraggio MJ, Kang J, Hoffman JR (2008) Effect of rest interval length on bench press performance in boys, teens, and men. Pediatr Exerc Sci 20(4):457–469

    PubMed  Google Scholar 

  • Faigenbaum AD, Kraemer WJ, Blimkie CJR, Jeffreys I, Micheli LJ, Nitka M, Rowland TW (2009) Youth resistance training: updated position statement paper from the national strength and conditioning association. J Strength Cond Res 23:S60–S79

    Article  PubMed  Google Scholar 

  • Falk B, Dotan R (2006) Child-adult differences in the recovery from high-intensity exercise. Exerc Sport Sci Rev 34(3):107–112

    Article  PubMed  Google Scholar 

  • Fitts RH, Metzger JM (1993) Mechanisms of muscular fatigue. In: Poortmans JR (ed) Principles of exercise biochemistry, vol 33. 2nd edn. Karger S Inc., Basel, pp 248–268

  • Grosset JF, Mora I, Lambertz D, Perot C (2005) Age-related changes in twitch properties of plantar flexor muscles in prepubertal children. Pediatr Res 58(5):966–970

    Article  PubMed  Google Scholar 

  • Hatzikotoulas K, Patikas D, Bassa E, Hadjileontiadis L, Koutedakis Y, Kotzamanidis C (2009) Submaximal fatigue and recovery in boys and men. Int J Sport Med 30(10):741–746

    Article  CAS  Google Scholar 

  • Hommerding PX, Donadio MVF, Paim TF, Marostica PJC (2010) The borg scale is accurate in children and adolescents older than 9 years with cystic fibrosis. Resp Care 55(6):729–733

    Google Scholar 

  • Kotzamanidou M, Michailidis I, Hatzikotoulas K, Hasani A, Bassa E, Kotzamanidis C (2005) Differences in recovery process between adult and prepubertal males after a maximal isokinetic fatigue task. Isokinet Exerc Sci 13(4):261–266

    Google Scholar 

  • Moalla W, Merzouk A, Costes F, Tabka Z, Ahmaidi S (2006) Muscle oxygenation and EMG activity during isometric exercise in children. J Sport Sci 24(11):1195–1201

    Article  Google Scholar 

  • O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN (2009) The effects of agonist and antagonist muscle activation on the knee extension moment-angle relationship in adults and children. Eur J Appl Physiol 106(6):849–856

    Article  PubMed  Google Scholar 

  • Paddock N, Behm D (2009) The effect of an inverted body position on lower limb muscle force and activation. Appl Physiol Nutr Me 34(4):673–680

    Article  Google Scholar 

  • Paraschos I, Hassan A, Bassa E, Hatzikotoulas K, Patikas D, Kotzamanidis C (2007) Fatigue differences between adults and prepubertal males. Int J Sports Med 28:958–963

    Article  CAS  PubMed  Google Scholar 

  • Place N, Maffiuletti NA, Martin A, Lepers R (2007) Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve 35(4):486–495

    Article  PubMed  Google Scholar 

  • Ratel S, Duche P, Hennegrave A, Van Praagh E, Bedu M (2002) Acid-base balance during repeated cycling sprints in boys and men. J Appl Physiol 92(2):479–485

    CAS  PubMed  Google Scholar 

  • Ratel S, Duche P, Williams CA (2006) Muscle fatigue during high-intensity exercise in children. Sports Med 36(12):1031–1065

    Article  PubMed  Google Scholar 

  • Sale DG (2002) Postactivation potentiation: role in human performance. Exerc Sport Sci Rev 30(3):138–143

    Article  PubMed  Google Scholar 

  • Sale D (2004) Postactivation potentiation: role in performance. Brit J Sport Med 38(4):386–387

    Article  CAS  Google Scholar 

  • Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51(3):170–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor DJ, Kemp GJ, Thompson CH, Radda GK (1997) Ageing: effects on oxidative function of skeletal muscle in vivo. Mol Cell Biochem 174(1–2):321–324

    Article  CAS  PubMed  Google Scholar 

  • Vollestad NK (1997) Measurement of human muscle fatigue. J Neurosci Meth 74(2):219–227

    Article  CAS  Google Scholar 

  • Williams JG, Eston R, Furlong B (1994) Cert—a perceived exertion scale for young-children. Percept Motor Skill 79(3):1451–1458

    Article  CAS  Google Scholar 

  • Zafeiridis A, Dalamitros A, Dipla K, Manou V, Galanis N, Kellis S (2005) Recovery during high-intensity intermittent anaerobic exercise in boys, teens, and men. Med Sci Sport Exer 37(3):505–512

    Article  Google Scholar 

Download references

Acknowledgments

The Natural Sciences and Engineering Research Council (NSERC) of Canada partially funded this research.

Conflict of interest

There were no conflicts of interest for any authors involved with this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Behm.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, J.R., Button, D.C., Chaouachi, A. et al. Prepubescent males are less susceptible to neuromuscular fatigue following resistance exercise. Eur J Appl Physiol 114, 825–835 (2014). https://doi.org/10.1007/s00421-013-2809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2809-2

Keywords

Navigation