Skip to main content
Log in

Effect of neuromuscular electrical stimulation intensity over the tibial nerve trunk on triceps surae muscle fatigue

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

This study was designed to investigate whether the intensity modulation of a neuromuscular electrical stimulation (NMES) protocol delivered over the nerve trunk of the plantar flexors would lead to differential peripheral and central contributions of muscle fatigue.

Methods

Three fatiguing isometric protocols of the plantar flexors matched for the same amount of isometric torque-time integral (TTI) were randomly performed including a volitional protocol at 20 % of the maximal voluntary contraction (MVC) and two NMES protocols (one at constant intensity, CST; the other at intensity level progressively adjusted to maintain 20 % of MVC, PROG).

Results

No time x protocol interaction was found for any of the variables. The MVC decreased similarly (≈12 %, p < 0.001) after all protocols, so did the potentiated twitch responses (p = 0.001). Although voluntary activation of the plantar flexors did not change, maximal H-reflex to M-wave ratio of the soleus (SOL) and the gastrocnemius medialis (GM) muscles showed an overall increase (SOL: p = 0.037, GM: p = 0.041), while it remained stable for the gastrocnemius lateralis muscle (p = 0.221). A main time effect was observed only for the SOL maximal V-wave to the superimposed M-wave ratio (p = 0.024) and to the superimposed H-reflex (p = 0.008). While similar central and peripheral adaptations were observed after the three fatiguing protocols, the individual contribution of the three different triceps surae muscles was different.

Conclusion

Whether the current intensity was increased or not, the adaptations after a NMES protocol yield to similar muscle fatigue adaptations as voluntary contractions likely through similar pathways matching a similar TTI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aagaard P, Simonsen EB, Andersen JL et al (2002) Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol 92:2309–2318

    PubMed  Google Scholar 

  • Adams GR, Harris RT, Woodard D, Dudley GA (1993) Mapping of electrical muscle stimulation using MRI. J Appl Physiol 74:532–537

    CAS  PubMed  Google Scholar 

  • Allen GM, Gandevia SC, McKenzie DK (1995) Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle Nerve 18:593–600

    Article  CAS  PubMed  Google Scholar 

  • Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    Article  CAS  PubMed  Google Scholar 

  • Baldwin ERL, Klakowicz PM, Collins DF (2006) Wide-pulse-width, high-frequency neuromuscular stimulation: implications for functional electrical stimulation. J Appl Physiol 101:228–240

    Article  PubMed  Google Scholar 

  • Bawa P, Murnaghan C (2009) Motor unit rotation in a variety of human muscles. J Neurophysiol 102:2265–2272

    Article  PubMed  Google Scholar 

  • Bawa P, Pang MY, Olesen KA, Calancie B (2006) Rotation of motoneurons during prolonged isometric contractions in humans. J Neurophysiol 96:1135–1140

    Article  PubMed  Google Scholar 

  • Bax L, Staes F, Verhagen A (2005) Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Med 35:191–212

    Article  PubMed  Google Scholar 

  • Bergquist AJ, Clair JM, Collins DF (2011a) Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: triceps surae. J Appl Physiol 110:627–637

    Article  CAS  PubMed  Google Scholar 

  • Bergquist AJ, Clair JM, Lagerquist O et al (2011b) Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley. Eur J Appl Physiol 111:2409–2426

    Article  CAS  PubMed  Google Scholar 

  • Bergquist AJ, Wiest MJ, Collins DF (2012) Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: quadriceps femoris. J Appl Physiol 113:78–89

    Article  CAS  PubMed  Google Scholar 

  • Bergström M, Hultman E (1988) Energy cost and fatigue during intermittent electrical stimulation of human skeletal muscle. J Appl Physiol 65:1500–1505

    PubMed  Google Scholar 

  • Binder-Macleod SA, Scott WB (2001) Comparison of fatigue produced by various electrical stimulation trains. Acta Physiol Scand 172:195–203

    Article  CAS  PubMed  Google Scholar 

  • Boerio D, Jubeau M, Zory R, Maffiuletti NA (2005) Central and peripheral fatigue after electrostimulation-induced resistance exercise. Med Sci Sports Exerc 37:973–978

    PubMed  Google Scholar 

  • Burridge JH, Ladouceur M (2001) Clinical and therapeutic applications of neuromuscular stimulation: a review of current use and speculation into future developments. Neuromodulation 4:147–154

    Article  CAS  PubMed  Google Scholar 

  • Collins DF (2007) Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation. Exerc Sport Sci Rev 35:102–109

    Article  PubMed  Google Scholar 

  • Colson SS, Benchortane M, Tanant V et al (2010) Neuromuscular electrical stimulation training: a safe and effective treatment for facioscapulohumeral muscular dystrophy patients. Arch Phys Med Rehabil 91:697–702

    Article  PubMed  Google Scholar 

  • Dean JC, Yates LM, Collins DF (2007) Turning on the central contribution to contractions evoked by neuromuscular electrical stimulation. J Appl Physiol 103:170–176

    Article  CAS  PubMed  Google Scholar 

  • Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol (Lond) 586:11–23

    Article  CAS  Google Scholar 

  • Fuglevand AJ, Zackowski KM, Huey KA, Enoka RM (1993) Impairment of neuromuscular propagation during human fatiguing contractions at submaximal forces. J Physiol (Lond) 460:549–572

    CAS  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    CAS  PubMed  Google Scholar 

  • Gondin J, Guette M, Ballay Y, Martin A (2005) Electromyostimulation training effects on neural drive and muscle architecture. Med Sci Sports Exerc 37:1291–1299

    Article  PubMed  Google Scholar 

  • Gondin J, Duclay J, Martin A (2006) Soleus-and gastrocnemii-evoked V-wave responses increase after neuromuscular electrical stimulation training. J Neurophysiol 95:3328–3335

    Article  PubMed  Google Scholar 

  • Gondin J, Giannesini B, Vilmen C et al (2010) Effects of stimulation frequency and pulse duration on fatigue and metabolic cost during a single bout of neuromuscular electrical stimulation. Muscle Nerve 41:667–678

    PubMed  Google Scholar 

  • Gorgey AS, Black CD, Elder CP, Dudley GA (2009) Effects of electrical stimulation parameters on fatigue in skeletal muscle. J Orthop Sports Phys Ther 39:684–692

    Article  PubMed  Google Scholar 

  • Gregory CM, Bickel CS (2005) Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 85:358–364

    PubMed  Google Scholar 

  • Gregory CM, Dixon W, Bickel CS (2007) Impact of varying pulse frequency and duration on muscle torque production and fatigue. Muscle Nerve 35:504–509

    Article  PubMed  Google Scholar 

  • Grosprêtre S, Martin A (2012) H reflex and spinal excitability: methodological considerations. J Neurophysiol 107:1649–1654

    Article  PubMed  Google Scholar 

  • Hagbarth KE (1962) Post-tetanic potentiation of myotatic reflexes in man. J Neurol Neurosurg Psychiatr 25:1–10

    Article  CAS  PubMed  Google Scholar 

  • Hamdy S, Rothwell JC, Aziz Q et al (1998) Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat Neurosci 1:64–68

    Article  CAS  PubMed  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965) Excitability and inhabitability of motoneurons of different sizes. J Neurophysiol 28:599–620

    CAS  PubMed  Google Scholar 

  • Herbert RD, Gandevia SC (1999) Twitch interpolation in human muscles: mechanisms and implications for measurement of voluntary activation. J Neurophysiol 82:2271–2283

    CAS  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374

    Article  CAS  PubMed  Google Scholar 

  • Hirst GD, Redman SJ, Wong K (1981) Post-tetanic potentiation and facilitation of synaptic potentials evoked in cat spinal motoneurones. J Physiol (Lond) 321:97–109

    CAS  Google Scholar 

  • Hultman E, Sjöholm H, Jäderholm-Ek I, Krynicki J (1983) Evaluation of methods for electrical stimulation of human skeletal muscle in situ. Pflugers Arch 398:139–141

    Article  CAS  PubMed  Google Scholar 

  • Jones DA (1996) High-and low-frequency fatigue revisited. Acta Physiol Scand 156:265–270

    Article  CAS  PubMed  Google Scholar 

  • Kebaetse MB, Binder-Macleod SA (2004) Strategies that improve human skeletal muscle performance during repetitive, non-isometric contractions. Pflugers Arch 448:525–532

    Article  CAS  PubMed  Google Scholar 

  • Kesar T, Chou L-W, Binder-Macleod SA (2008) Effects of stimulation frequency versus pulse duration modulation on muscle fatigue. J Electromyogr Kinesiol 18:662–671

    Article  PubMed Central  PubMed  Google Scholar 

  • Kiernan MC, Lin CS-Y, Burke D (2004) Differences in activity-dependent hyperpolarization in human sensory and motor axons. J Physiol (Lond) 558:341–349

    Article  CAS  Google Scholar 

  • Kitago T, Mazzocchio R, Liuzzi G, Cohen LG (2004) Modulation of H-reflex excitability by tetanic stimulation. Clin Neurophysiol 115:858–861

    Article  PubMed  Google Scholar 

  • Klakowicz PM, Baldwin ERL, Collins DF (2006) Contribution of M-waves and H-reflexes to contractions evoked by tetanic nerve stimulation in humans. J Neurophysiol 96:1293–1302

    Article  PubMed  Google Scholar 

  • Kufel TJ, Pineda LA, Mador MJ (2002) Comparison of potentiated and unpotentiated twitches as an index of muscle fatigue. Muscle Nerve 25:438–444

    Article  PubMed  Google Scholar 

  • Lagerquist O, Collins DF (2010) Influence of stimulus pulse width on M-waves, H-reflexes, and torque during tetanic low-intensity neuromuscular stimulation. Muscle Nerve 42:886–893

    Article  PubMed  Google Scholar 

  • Lévénez M, Kotzamanidis C, Carpentier A, Duchateau J (2005) Spinal reflexes and co-activation of ankle muscles during a submaximal fatiguing contraction. J Appl Physiol 99:1182–1188

    Article  PubMed  Google Scholar 

  • Lloyd DPC (1949) Post-tetanic potentiation of response in monosynaptic reflex pathways of the spinal cord. J Gen Physiol 33:147–170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maffiuletti NA (2010) Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol 110:223–234

    Article  PubMed  Google Scholar 

  • Matsunaga T, Shimada Y, Sato K (1999) Muscle fatigue from intermittent stimulation with low and high frequency electrical pulses. Arch Phys Med Rehabil 80:48–53

    Article  CAS  PubMed  Google Scholar 

  • Miles GB, Dai Y, Brownstone RM (2005) Mechanisms underlying the early phase of spike frequency adaptation in mouse spinal motoneurones. J Physiol (Lond) 566:519–532

    Article  CAS  Google Scholar 

  • Millet GY, Martin V, Martin A, Vergès S (2011) Electrical stimulation for testing neuromuscular function: from sport to pathology. Eur J Appl Physiol 111:2489–2500

    Article  PubMed  Google Scholar 

  • Muthalib M, Jubeau M, Millet GY et al (2010) Biceps brachii muscle oxygenation in electrical muscle stimulation. Clin Physiol Funct Imaging 30:360–368

    PubMed  Google Scholar 

  • Papaiordanidou M, Guiraud D, Varray A (2010) Kinetics of neuromuscular changes during low-frequency electrical stimulation. Muscle Nerve 41:54–62

    Article  PubMed  Google Scholar 

  • Perez MA, Field-Fote EC, Floeter MK (2003) Patterned sensory stimulation induces plasticity in reciprocal Ia inhibition in humans. J Neurosci 23:2014–2018

    CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny E, Mazevet D (2000) The monosynaptic reflex: a tool to investigate motor control in humans. Interest and limits. Neurophysiol Clin 30:67–80

    Article  CAS  PubMed  Google Scholar 

  • Russ DW, Elliott MA, Vandenborne K et al (2002a) Metabolic costs of isometric force generation and maintenance of human skeletal muscle. Am J Physiol Endocrinol Metab 282:E448–E457

    CAS  PubMed  Google Scholar 

  • Russ DW, Vandenborne K, Binder-Macleod SA (2002b) Factors in fatigue during intermittent electrical stimulation of human skeletal muscle. J Appl Physiol 93:469–478

    PubMed  Google Scholar 

  • Scaglioni G, Martin A (2009) Assessment of plantar flexors activation capacity: nerve versus muscle stimulation by single versus double pulse. Eur J Appl Physiol 106:563–572

    Article  PubMed  Google Scholar 

  • Schieppati M (1987) The Hoffmann reflex: a means of assessing spinal reflex excitability and its descending control in man. Prog Neurobiol 28:345–376

    Article  CAS  PubMed  Google Scholar 

  • Shield A, Zhou S (2004) Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med 34:253–267

    Article  PubMed  Google Scholar 

  • Strojnik V, Komi PV (1998) Neuromuscular fatigue after maximal stretch-shortening cycle exercise. J Appl Physiol 84:344–350

    CAS  PubMed  Google Scholar 

  • Taylor JL (2009) Point:Counterpoint: the interpolated twitch does/does not provide a valid measure of the voluntary activation of muscle. J Appl Physiol 107:354–355

    Article  PubMed  Google Scholar 

  • Theurel J, Lepers R, Pardon L, Maffiuletti NA (2007) Differences in cardiorespiratory and neuromuscular responses between voluntary and stimulated contractions of the quadriceps femoris muscle. Respir Physiol Neurobiol 157:341–347

    Article  PubMed  Google Scholar 

  • Tucker KJ, Tuncer M, Türker KS (2005) A review of the H-reflex and M-wave in the human triceps surae. Hum Mov Sci 24:667–688

    Article  PubMed  Google Scholar 

  • Upton AR, McComas AJ, Sica RE (1971) Potentiation of “late” responses evoked in muscles during effort. J Neurol Neurosurg Psychiatr 34:699–711

    Article  CAS  PubMed  Google Scholar 

  • Vanderthommen M, Depresseux JC, Dauchat L et al (2000) Spatial distribution of blood flow in electrically stimulated human muscle: a positron emission tomography study. Muscle Nerve 23:482–489

    Article  CAS  PubMed  Google Scholar 

  • Vanderthommen M, Duteil S, Wary C et al (2003) A comparison of voluntary and electrically induced contractions by interleaved 1H- and 31P-NMRS in humans. J Appl Physiol 94:1012–1024

    CAS  PubMed  Google Scholar 

  • Vilin YY, Ruben PC (2001) Slow inactivation in voltage-gated sodium channels: molecular substrates and contributions to channelopathies. Cell Biochem Biophys 35:171–190

    Article  CAS  PubMed  Google Scholar 

  • Westerblad H, Allen DG, Lännergren J (2002) Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci 17:17–21

    CAS  PubMed  Google Scholar 

  • Zehr EP (2002) Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol 86:455–468

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the bilateral researcher exchange program Aurora, financed by the Norwegian Research Council and the French Ministry of Foreign affairs (Grant number: 27407SG) (http://www.campusfrance.org/fr/aurora). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aude-Clémence M. Doix.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doix, AC.M., Matkowski, B., Martin, A. et al. Effect of neuromuscular electrical stimulation intensity over the tibial nerve trunk on triceps surae muscle fatigue. Eur J Appl Physiol 114, 317–329 (2014). https://doi.org/10.1007/s00421-013-2780-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2780-y

Keywords

Navigation