Skip to main content

The influence of acetaminophen on repeated sprint cycling performance



The aim of this study was to investigate the effect of acetaminophen on repeated sprint cycling performance.


Nine recreationally active male participants completed a graded exercise test, a familiarisation set of Wingate Anaerobic Tests (WAnTs) and two experimental sets of WAnTs (8 × 30 s sprints, 2 min active rest intervals). In the experimental WAnTs, participants ingested either 1.5 g acetaminophen or a placebo in a double-blind, randomised, crossover design. During the WAnT trials, participants provided ratings of perceived pain 20 s into each sprint. Mean and peak power output and heart rate were recorded immediately following each sprint, and percentage decrement in mean power output was subsequently calculated.


Participants cycled at a significantly greater mean power output over the course of 8 WAnTs (p < 0.05) following the ingestion of acetaminophen (391 ± 74 vs. 372 ± 90 W), due to a significantly greater mean power output during sprints 6, 7 and 8 (p < 0.05). Percentage decrements in mean power output were also significantly reduced (p < 0.05) following acetaminophen ingestion (17 ± 14 vs. 24 ± 17 %). No significant differences in peak power output, perceived pain or heart rate were observed between conditions.


Acetaminophen may have improved performance through the reduction of pain for a given work rate, thereby enabling participants to exercise closer to a true physiological limit. These results suggest that exercise may be regulated by pain perception, and that an increased pain tolerance can improve exercise performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4







Confidence intervals


Central nervous system


Heart rate


Mean power output


Peak power output


Repeated sprint exercise


Transient receptor potential cation channel, subfamily A, member 1

\({\dot{\text{V}}\text{O}}_{2\hbox{max} }\) :

Maximal oxygen consumption




Wingate anaerobic test

W dec :

Percentage decrement in mean power output


  • Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2009) Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol 587:271–283. doi:10.1113/jphysiol.2008.163303

    Article  CAS  PubMed  Google Scholar 

  • Andersson DA, Gentry C, Alenmyr L, Killander D, Lewis SE, Andersson A, Bucher B, Galzi JL, Sterner O, Bevan S, Hogestatt ED, Zygmunt PM (2011) TRPA1 mediates spinal antinociception induced by acetaminophen and the cannabinoid Delta(9)-tetrahydrocannabiorcol. Nature Commun 2:551. doi:10.1038/ncomms1559

    Article  Google Scholar 

  • Ansley L, Robson PJ, Gibson ASC, Noakes TD (2004) Anticipatory pacing strategies during supramaximal exercise lasting longer than 30 S. Med Sci Sports Exerc 36:309–314. doi:10.1249/01.mss.0000113474.31529.c6

    Article  PubMed  Google Scholar 

  • Bertolini A, Ferrari A, Ottani A, Guerzoni S, Tacchi R, Leone S (2006) Paracetamol: new vistas of an old drug. CNS Drug Rev 12:250–275. doi:10.1111/j.1527-3458.2006.00250.x

    Article  CAS  PubMed  Google Scholar 

  • Billaut F, Bishop DJ, Schaerz S, Noakes TD (2011) Influence of knowledge of sprint number on pacing during repeated-sprint exercise. Med Sci Sports Exerc 43:665–672. doi:10.1249/MSS.0b013e3181f6ee3b

    Article  PubMed  Google Scholar 

  • Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK, Nevill AM (1995) Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol 482:467–480

    CAS  PubMed  Google Scholar 

  • Bonnefont J, Alloui A, Chapuy E, Clottes E, Eschalier A (2003a) Orally administered paracetamol does not act locally in the rat formalin test: evidence for a supraspinal, serotonin-dependent antinociceptive mechanism. Anesthesiology 99:976–981

    Article  CAS  PubMed  Google Scholar 

  • Bonnefont J, Courade JP, Alloui A, Eschalier A (2003b) Antinociceptive mechanism of action of paracetamol. Drugs 63:1–4

    Article  PubMed  Google Scholar 

  • Boutaud O, Aronoff DM, Richardson JH, Marnett LJ, Oates JA (2002) Determinants of the cellular specificity of acetaminophen as an inhibitor of prostaglandin H(2) synthases. Proc Natl Acad Sci USA 99:7130–7135. doi:10.1073/pnas.102588199

    Article  CAS  PubMed  Google Scholar 

  • Bradley AL, Ball TE (1992) The Wingate Test: effect of load on the power outputs of female athletes and nonathletes. J Appl Sport Sci Res 6:193–199

    Google Scholar 

  • Burke A, Smyth E, Fitzgerald GA (2006) Analgesic–antipyretic agents; pharmacotherapy of gout. Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York

    Google Scholar 

  • Calbet JA, Chavarren J, Dorado C (1997) Fractional use of anaerobic capacity during a 30- and a 45-s Wingate test. Eur J Appl Physiol Occup Physiol 76:308–313

    Article  CAS  PubMed  Google Scholar 

  • Chandler JV, Blair SN (1980) The effect of amphetamines on selected physiological components related to athletic success. Med Sci Sports Exerc 12:65–69. doi:10.1249/00005768-198021000-00013

    Article  CAS  PubMed  Google Scholar 

  • Cook DB, O’Connor PJ, Eubanks SA, Smith JC, Lee M (1997) Naturally occurring muscle pain during exercise: assessment and experimental evidence. Med Sci Sports Exerc 29:999–1012 (pii: 00005768-199708000-00004)

    Article  CAS  PubMed  Google Scholar 

  • Dube JA, Mercier C (2011) Effect of pain and pain expectation on primary motor cortex excitability. Clin Neurophysiol 122:2318–2323. doi:10.1016/j.clinph.2011.03.026

    Article  PubMed  Google Scholar 

  • Garcin M, Mille-Hamard L, Billat V, Humbert L, Lhermitte M (2005a) Influence of acetaminophen consumption on perceived exertion at the lactate concentration threshold. Percept Mot Skills 101:675–683. doi:10.2466/pms.101.3.675-683

    Article  CAS  PubMed  Google Scholar 

  • Garcin M, Mille-Hamard L, Billat V, Imbenotte M, Humbert L, Lhermitte Z (2005b) Use of acetaminophen in young sub elite athletes. J Sports Med Phys Fit 45:604–607

    CAS  Google Scholar 

  • Girard O, Mendez-Villanueva A, Bishop D (2011) Repeated-sprint ability: part I: factors contributing to fatigue. Sports Med 41:673–694. doi:10.2165/11590550-000000000-00000

    Article  PubMed  Google Scholar 

  • Grafen G, Hails R (2002) Modern statistics for life sciences. Oxford University Press, New York

    Google Scholar 

  • Hudson GM, Green JM, Bishop PA, Richardson MT (2008) Effects of caffeine and aspirin on light resistance training performance, perceived exertion, and pain perception. J Strength Cond Res 22:1950–1957. doi:10.1519/JSC.0b013e31818219cb

    Article  PubMed  Google Scholar 

  • Laaksonen R, Fogelholm M, Himberg JJ, Laakso J, Salorinne Y (1995) Ubiquinone supplementation and exercise capacity in trained young and older men. Eur J Appl Physiol Occup Physiol 72:95–100. doi:10.1007/BF00964121

    Article  CAS  PubMed  Google Scholar 

  • Makin AJ, Williams R (1997) Acetaminophen-induced hepatotoxicity: predisposing factors and treatments. Adv Intern Med 42:453–483

    CAS  PubMed  Google Scholar 

  • Mauger AR, Hopker JG (2013) The effect of acetaminophen ingestion on cortico-spinal excitability. Can J Physiol Pharmacol 91:187–189. doi:10.1139/cjpp-2012-0213

    Article  CAS  PubMed  Google Scholar 

  • Mauger AR, Jones AM, Williams CA (2009) Influence of feedback and prior experience on pacing during a 4-km cycle time trial. Med Sci Sports Exerc 41:451–458. doi:10.1249/MSS.0b013e3181854957

    Article  PubMed  Google Scholar 

  • Mauger AR, Jones AM, Williams CA (2010) Influence of acetaminophen on performance during time trial cycling. J Appl Physiol 108:98–104. doi:10.1152/japplphysiol.00761.2009

    Article  CAS  PubMed  Google Scholar 

  • Mauger A, Neuloh J, Castle P (2012) Analysis of pacing strategy selection in elite 400-m freestyle swimming. Med Sci Sports Exerc 44:2205–2212. doi:10.1249/MSS.0b013e3182604b84

    Article  PubMed  Google Scholar 

  • McGawley K, Bishop D (2006) Reliability of a 5 × 6-s maximal cycling repeated-sprint test in trained female team-sport athletes. Eur J Appl Physiol 98:383–393. doi:10.1007/s00421-006-0284-8

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Villanueva A, Hamer P, Bishop D (2007) Physical fitness and performance. Fatigue responses during repeated sprints matched for initial mechanical output. Med Sci Sports Exerc 39:2219–2225. doi:10.1249/mss.0b013e31815669dc

    Article  PubMed  Google Scholar 

  • Mohr M, Nordsborg N, Nielsen JJ, Pedersen LD, Fischer C, Krustrup P, Bangsbo J (2004) Potassium kinetics in human muscle interstitium during repeated intense exercise in relation to fatigue. Pflugers Arch 448:452–456. doi:10.1007/s00424-004-1257-6

    Article  CAS  PubMed  Google Scholar 

  • Motl RW, O’Connor PJ, Tubandt L, Puetz T, Ely MR (2006) Effect of caffeine on leg muscle pain during cycling exercise among females. Med Sci Sports Exerc 38:598–604. doi:10.1249/01.mss.0000193558.70995.03

    Article  CAS  PubMed  Google Scholar 

  • Noakes TD, St Clair Gibson A, Lambert EV (2005) From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions. Br J Sports Med 39:120–124. doi:10.1136/bjsm.2003.010330

    Article  CAS  PubMed  Google Scholar 

  • O’Connor PJ (1992) Psychological aspects of endurance performance. In: Astrand PO (ed) Endurance in Sport. Blackwell Science, Oxford

    Google Scholar 

  • O’Connor PJ, Cook DB (1999) Exercise and pain: the neurobiology, measurement, and laboratory study of pain in relation to exercise in humans. Exerc Sport Sci Rev 27:119–166 (pii:00003677-199900270-00007)

    Article  PubMed  Google Scholar 

  • Plaskett CJ, Cafarelli E (2001) Caffeine increases endurance and attenuates force sensation during submaximal isometric contractions. J Appl Physiol 91:1535–1544

    CAS  PubMed  Google Scholar 

  • Roi GS, Garagiola U, Verza P, Spadari G, Radice D, Zecca L, Cerretelli P (1994) Aspirin does not affect exercise performance. Int J Sports Med 15:224–227. doi:10.1055/s-2007-1021050

    Article  CAS  PubMed  Google Scholar 

  • Ross EZ, Gregson W, Williams K, Robertson C, George K (2010) Muscle contractile function and neural control after repetitive endurance cycling. Med Sci Sports Exerc 42:206–212. doi:10.1249/MSS.0b013e3181b07a18

    Article  PubMed  Google Scholar 

  • Sahlin K, Ren JM (1989) Relationship of contraction capacity to metabolic changes during recovery from a fatiguing contraction. J Appl Physiol 67:648–654

    CAS  PubMed  Google Scholar 

  • Sawrymowicz M (1997) The effect of exercise on the pharmacokinetics of acetaminophen and acetylsalicylic acid. Ann Acad Med Stetin 43:57–66

    CAS  PubMed  Google Scholar 

  • Sawynok J, Liu XJ (2003) Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 69:313–340. doi:10.1016/S0301-0082(03)00050-9

    Article  CAS  PubMed  Google Scholar 

  • Sgherza AL, Axen K, Fain R, Hoffman RS, Dunbar CC, Haas F (2002) Effect of naloxone on perceived exertion and exercise capacity during maximal cycle ergometry. J Appl Physiol 93:2023–2028. doi:10.1152/japplphysiol.00521.2002

    CAS  PubMed  Google Scholar 

  • Sinoway LI, Hill JM, Pickar JG, Kaufman MP (1993) Effects of contraction and lactic acid on the discharge of group III muscle afferents in cats. J Neurophysiol 69:1053–1059

    CAS  PubMed  Google Scholar 

  • Spencer M, Dawson B, Goodman C, Dascombe B, Bishop D (2008) Performance and metabolism in repeated sprint exercise: effect of recovery intensity. Eur J Appl Physiol 103:545–552. doi:10.1007/s00421-008-0749-z

    Article  CAS  PubMed  Google Scholar 

  • Stathis CG, Zhao S, Carey MF, Snow RJ (1999) Purine loss after repeated sprint bouts in humans. J Appl Physiol 87:2037–2042

    CAS  PubMed  Google Scholar 

  • Trappe TA, White F, Lambert CP, Cesar D, Hellerstein M, Evans WJ (2002) Effect of ibuprofen and acetaminophen on postexercise muscle protein synthesis. Am J Physiol Endocrinol Metab 282:551–556. doi:10.1152/ajpendo.00352.2001

    Google Scholar 

  • Tscholl P, Alonso JM, Dolle G, Junge A, Dvorak J (2010) The use of drugs and nutritional supplements in top-level track and field athletes. Am J Sports Med 38:133–140. doi:10.1177/0363546509344071

    Article  PubMed  Google Scholar 

  • Tucker R (2009) The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med 43:392–400. doi:10.1136/bjsm.2008.050799

    Article  CAS  PubMed  Google Scholar 

  • Tucker R, Noakes TD (2009) The physiological regulation of pacing strategy during exercise: a critical review. Br J Sports Med 43:e1. doi:10.1136/bjsm.2009.057562

    Article  CAS  PubMed  Google Scholar 

  • Ulmer HV (1996) Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia 52:416–420. doi:10.1007/BF01919309

    Article  CAS  PubMed  Google Scholar 

  • Van Wijck K, Lenaerts K, Van Bijnen AA, Boonen B, Van Loon LJ, Dejong CH, Buurman WA (2012) Aggravation of exercise-induced intestinal injury by Ibuprofen in athletes. Med Sci Sports Exerc 44:2257–2262. doi:10.1249/MSS.0b013e318265dd3d

    Article  PubMed  Google Scholar 

  • Watson P, Hasegawa H, Roelands B, Piacentini MF, Looverie R, Meeusen R (2005) Acute dopamine/noradrenaline reuptake inhibition enhances human exercise performance in warm, but not temperate conditions. J Physiol 565:873–883. doi:10.1113/jphysiol.2004.079202

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest


Author information

Authors and Affiliations


Corresponding author

Correspondence to Alexis R. Mauger.

Additional information

Communicated by Alain Martin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Foster, J., Taylor, L., Chrismas, B.C.R. et al. The influence of acetaminophen on repeated sprint cycling performance. Eur J Appl Physiol 114, 41–48 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Pain
  • Central regulation
  • Power output
  • Afferent feedback
  • Fatigue
  • Paracetamol