The influence of acetaminophen on repeated sprint cycling performance

Abstract

Introduction

The aim of this study was to investigate the effect of acetaminophen on repeated sprint cycling performance.

Methods

Nine recreationally active male participants completed a graded exercise test, a familiarisation set of Wingate Anaerobic Tests (WAnTs) and two experimental sets of WAnTs (8 × 30 s sprints, 2 min active rest intervals). In the experimental WAnTs, participants ingested either 1.5 g acetaminophen or a placebo in a double-blind, randomised, crossover design. During the WAnT trials, participants provided ratings of perceived pain 20 s into each sprint. Mean and peak power output and heart rate were recorded immediately following each sprint, and percentage decrement in mean power output was subsequently calculated.

Results

Participants cycled at a significantly greater mean power output over the course of 8 WAnTs (p < 0.05) following the ingestion of acetaminophen (391 ± 74 vs. 372 ± 90 W), due to a significantly greater mean power output during sprints 6, 7 and 8 (p < 0.05). Percentage decrements in mean power output were also significantly reduced (p < 0.05) following acetaminophen ingestion (17 ± 14 vs. 24 ± 17 %). No significant differences in peak power output, perceived pain or heart rate were observed between conditions.

Conclusion

Acetaminophen may have improved performance through the reduction of pain for a given work rate, thereby enabling participants to exercise closer to a true physiological limit. These results suggest that exercise may be regulated by pain perception, and that an increased pain tolerance can improve exercise performance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

5-HT:

Serotonin

ACT:

Acetaminophen/paracetamol

CI:

Confidence intervals

CNS:

Central nervous system

HR:

Heart rate

MPO:

Mean power output

PPO:

Peak power output

RSE:

Repeated sprint exercise

TRPA1:

Transient receptor potential cation channel, subfamily A, member 1

\({\dot{\text{V}}\text{O}}_{2\hbox{max} }\) :

Maximal oxygen consumption

W:

Watts

WAnT:

Wingate anaerobic test

W dec :

Percentage decrement in mean power output

References

  1. Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2009) Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol 587:271–283. doi:10.1113/jphysiol.2008.163303

    CAS  PubMed  Article  Google Scholar 

  2. Andersson DA, Gentry C, Alenmyr L, Killander D, Lewis SE, Andersson A, Bucher B, Galzi JL, Sterner O, Bevan S, Hogestatt ED, Zygmunt PM (2011) TRPA1 mediates spinal antinociception induced by acetaminophen and the cannabinoid Delta(9)-tetrahydrocannabiorcol. Nature Commun 2:551. doi:10.1038/ncomms1559

    Article  Google Scholar 

  3. Ansley L, Robson PJ, Gibson ASC, Noakes TD (2004) Anticipatory pacing strategies during supramaximal exercise lasting longer than 30 S. Med Sci Sports Exerc 36:309–314. doi:10.1249/01.mss.0000113474.31529.c6

    PubMed  Article  Google Scholar 

  4. Bertolini A, Ferrari A, Ottani A, Guerzoni S, Tacchi R, Leone S (2006) Paracetamol: new vistas of an old drug. CNS Drug Rev 12:250–275. doi:10.1111/j.1527-3458.2006.00250.x

    CAS  PubMed  Article  Google Scholar 

  5. Billaut F, Bishop DJ, Schaerz S, Noakes TD (2011) Influence of knowledge of sprint number on pacing during repeated-sprint exercise. Med Sci Sports Exerc 43:665–672. doi:10.1249/MSS.0b013e3181f6ee3b

    PubMed  Article  Google Scholar 

  6. Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK, Nevill AM (1995) Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol 482:467–480

    CAS  PubMed  Google Scholar 

  7. Bonnefont J, Alloui A, Chapuy E, Clottes E, Eschalier A (2003a) Orally administered paracetamol does not act locally in the rat formalin test: evidence for a supraspinal, serotonin-dependent antinociceptive mechanism. Anesthesiology 99:976–981

    CAS  PubMed  Article  Google Scholar 

  8. Bonnefont J, Courade JP, Alloui A, Eschalier A (2003b) Antinociceptive mechanism of action of paracetamol. Drugs 63:1–4

    PubMed  Article  Google Scholar 

  9. Boutaud O, Aronoff DM, Richardson JH, Marnett LJ, Oates JA (2002) Determinants of the cellular specificity of acetaminophen as an inhibitor of prostaglandin H(2) synthases. Proc Natl Acad Sci USA 99:7130–7135. doi:10.1073/pnas.102588199

    CAS  PubMed  Article  Google Scholar 

  10. Bradley AL, Ball TE (1992) The Wingate Test: effect of load on the power outputs of female athletes and nonathletes. J Appl Sport Sci Res 6:193–199

    Google Scholar 

  11. Burke A, Smyth E, Fitzgerald GA (2006) Analgesic–antipyretic agents; pharmacotherapy of gout. Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York

    Google Scholar 

  12. Calbet JA, Chavarren J, Dorado C (1997) Fractional use of anaerobic capacity during a 30- and a 45-s Wingate test. Eur J Appl Physiol Occup Physiol 76:308–313

    CAS  PubMed  Article  Google Scholar 

  13. Chandler JV, Blair SN (1980) The effect of amphetamines on selected physiological components related to athletic success. Med Sci Sports Exerc 12:65–69. doi:10.1249/00005768-198021000-00013

    CAS  PubMed  Article  Google Scholar 

  14. Cook DB, O’Connor PJ, Eubanks SA, Smith JC, Lee M (1997) Naturally occurring muscle pain during exercise: assessment and experimental evidence. Med Sci Sports Exerc 29:999–1012 (pii: 00005768-199708000-00004)

    CAS  PubMed  Article  Google Scholar 

  15. Dube JA, Mercier C (2011) Effect of pain and pain expectation on primary motor cortex excitability. Clin Neurophysiol 122:2318–2323. doi:10.1016/j.clinph.2011.03.026

    PubMed  Article  Google Scholar 

  16. Garcin M, Mille-Hamard L, Billat V, Humbert L, Lhermitte M (2005a) Influence of acetaminophen consumption on perceived exertion at the lactate concentration threshold. Percept Mot Skills 101:675–683. doi:10.2466/pms.101.3.675-683

    CAS  PubMed  Article  Google Scholar 

  17. Garcin M, Mille-Hamard L, Billat V, Imbenotte M, Humbert L, Lhermitte Z (2005b) Use of acetaminophen in young sub elite athletes. J Sports Med Phys Fit 45:604–607

    CAS  Google Scholar 

  18. Girard O, Mendez-Villanueva A, Bishop D (2011) Repeated-sprint ability: part I: factors contributing to fatigue. Sports Med 41:673–694. doi:10.2165/11590550-000000000-00000

    PubMed  Article  Google Scholar 

  19. Grafen G, Hails R (2002) Modern statistics for life sciences. Oxford University Press, New York

    Google Scholar 

  20. Hudson GM, Green JM, Bishop PA, Richardson MT (2008) Effects of caffeine and aspirin on light resistance training performance, perceived exertion, and pain perception. J Strength Cond Res 22:1950–1957. doi:10.1519/JSC.0b013e31818219cb

    PubMed  Article  Google Scholar 

  21. Laaksonen R, Fogelholm M, Himberg JJ, Laakso J, Salorinne Y (1995) Ubiquinone supplementation and exercise capacity in trained young and older men. Eur J Appl Physiol Occup Physiol 72:95–100. doi:10.1007/BF00964121

    CAS  PubMed  Article  Google Scholar 

  22. Makin AJ, Williams R (1997) Acetaminophen-induced hepatotoxicity: predisposing factors and treatments. Adv Intern Med 42:453–483

    CAS  PubMed  Google Scholar 

  23. Mauger AR, Hopker JG (2013) The effect of acetaminophen ingestion on cortico-spinal excitability. Can J Physiol Pharmacol 91:187–189. doi:10.1139/cjpp-2012-0213

    CAS  PubMed  Article  Google Scholar 

  24. Mauger AR, Jones AM, Williams CA (2009) Influence of feedback and prior experience on pacing during a 4-km cycle time trial. Med Sci Sports Exerc 41:451–458. doi:10.1249/MSS.0b013e3181854957

    PubMed  Article  Google Scholar 

  25. Mauger AR, Jones AM, Williams CA (2010) Influence of acetaminophen on performance during time trial cycling. J Appl Physiol 108:98–104. doi:10.1152/japplphysiol.00761.2009

    CAS  PubMed  Article  Google Scholar 

  26. Mauger A, Neuloh J, Castle P (2012) Analysis of pacing strategy selection in elite 400-m freestyle swimming. Med Sci Sports Exerc 44:2205–2212. doi:10.1249/MSS.0b013e3182604b84

    PubMed  Article  Google Scholar 

  27. McGawley K, Bishop D (2006) Reliability of a 5 × 6-s maximal cycling repeated-sprint test in trained female team-sport athletes. Eur J Appl Physiol 98:383–393. doi:10.1007/s00421-006-0284-8

    CAS  PubMed  Article  Google Scholar 

  28. Mendez-Villanueva A, Hamer P, Bishop D (2007) Physical fitness and performance. Fatigue responses during repeated sprints matched for initial mechanical output. Med Sci Sports Exerc 39:2219–2225. doi:10.1249/mss.0b013e31815669dc

    PubMed  Article  Google Scholar 

  29. Mohr M, Nordsborg N, Nielsen JJ, Pedersen LD, Fischer C, Krustrup P, Bangsbo J (2004) Potassium kinetics in human muscle interstitium during repeated intense exercise in relation to fatigue. Pflugers Arch 448:452–456. doi:10.1007/s00424-004-1257-6

    CAS  PubMed  Article  Google Scholar 

  30. Motl RW, O’Connor PJ, Tubandt L, Puetz T, Ely MR (2006) Effect of caffeine on leg muscle pain during cycling exercise among females. Med Sci Sports Exerc 38:598–604. doi:10.1249/01.mss.0000193558.70995.03

    CAS  PubMed  Article  Google Scholar 

  31. Noakes TD, St Clair Gibson A, Lambert EV (2005) From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions. Br J Sports Med 39:120–124. doi:10.1136/bjsm.2003.010330

    CAS  PubMed  Article  Google Scholar 

  32. O’Connor PJ (1992) Psychological aspects of endurance performance. In: Astrand PO (ed) Endurance in Sport. Blackwell Science, Oxford

    Google Scholar 

  33. O’Connor PJ, Cook DB (1999) Exercise and pain: the neurobiology, measurement, and laboratory study of pain in relation to exercise in humans. Exerc Sport Sci Rev 27:119–166 (pii:00003677-199900270-00007)

    PubMed  Article  Google Scholar 

  34. Plaskett CJ, Cafarelli E (2001) Caffeine increases endurance and attenuates force sensation during submaximal isometric contractions. J Appl Physiol 91:1535–1544

    CAS  PubMed  Google Scholar 

  35. Roi GS, Garagiola U, Verza P, Spadari G, Radice D, Zecca L, Cerretelli P (1994) Aspirin does not affect exercise performance. Int J Sports Med 15:224–227. doi:10.1055/s-2007-1021050

    CAS  PubMed  Article  Google Scholar 

  36. Ross EZ, Gregson W, Williams K, Robertson C, George K (2010) Muscle contractile function and neural control after repetitive endurance cycling. Med Sci Sports Exerc 42:206–212. doi:10.1249/MSS.0b013e3181b07a18

    PubMed  Article  Google Scholar 

  37. Sahlin K, Ren JM (1989) Relationship of contraction capacity to metabolic changes during recovery from a fatiguing contraction. J Appl Physiol 67:648–654

    CAS  PubMed  Google Scholar 

  38. Sawrymowicz M (1997) The effect of exercise on the pharmacokinetics of acetaminophen and acetylsalicylic acid. Ann Acad Med Stetin 43:57–66

    CAS  PubMed  Google Scholar 

  39. Sawynok J, Liu XJ (2003) Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 69:313–340. doi:10.1016/S0301-0082(03)00050-9

    CAS  PubMed  Article  Google Scholar 

  40. Sgherza AL, Axen K, Fain R, Hoffman RS, Dunbar CC, Haas F (2002) Effect of naloxone on perceived exertion and exercise capacity during maximal cycle ergometry. J Appl Physiol 93:2023–2028. doi:10.1152/japplphysiol.00521.2002

    CAS  PubMed  Google Scholar 

  41. Sinoway LI, Hill JM, Pickar JG, Kaufman MP (1993) Effects of contraction and lactic acid on the discharge of group III muscle afferents in cats. J Neurophysiol 69:1053–1059

    CAS  PubMed  Google Scholar 

  42. Spencer M, Dawson B, Goodman C, Dascombe B, Bishop D (2008) Performance and metabolism in repeated sprint exercise: effect of recovery intensity. Eur J Appl Physiol 103:545–552. doi:10.1007/s00421-008-0749-z

    CAS  PubMed  Article  Google Scholar 

  43. Stathis CG, Zhao S, Carey MF, Snow RJ (1999) Purine loss after repeated sprint bouts in humans. J Appl Physiol 87:2037–2042

    CAS  PubMed  Google Scholar 

  44. Trappe TA, White F, Lambert CP, Cesar D, Hellerstein M, Evans WJ (2002) Effect of ibuprofen and acetaminophen on postexercise muscle protein synthesis. Am J Physiol Endocrinol Metab 282:551–556. doi:10.1152/ajpendo.00352.2001

    Google Scholar 

  45. Tscholl P, Alonso JM, Dolle G, Junge A, Dvorak J (2010) The use of drugs and nutritional supplements in top-level track and field athletes. Am J Sports Med 38:133–140. doi:10.1177/0363546509344071

    PubMed  Article  Google Scholar 

  46. Tucker R (2009) The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med 43:392–400. doi:10.1136/bjsm.2008.050799

    CAS  PubMed  Article  Google Scholar 

  47. Tucker R, Noakes TD (2009) The physiological regulation of pacing strategy during exercise: a critical review. Br J Sports Med 43:e1. doi:10.1136/bjsm.2009.057562

    CAS  PubMed  Article  Google Scholar 

  48. Ulmer HV (1996) Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia 52:416–420. doi:10.1007/BF01919309

    CAS  PubMed  Article  Google Scholar 

  49. Van Wijck K, Lenaerts K, Van Bijnen AA, Boonen B, Van Loon LJ, Dejong CH, Buurman WA (2012) Aggravation of exercise-induced intestinal injury by Ibuprofen in athletes. Med Sci Sports Exerc 44:2257–2262. doi:10.1249/MSS.0b013e318265dd3d

    PubMed  Article  Google Scholar 

  50. Watson P, Hasegawa H, Roelands B, Piacentini MF, Looverie R, Meeusen R (2005) Acute dopamine/noradrenaline reuptake inhibition enhances human exercise performance in warm, but not temperate conditions. J Physiol 565:873–883. doi:10.1113/jphysiol.2004.079202

    CAS  PubMed  Article  Google Scholar 

Download references

Conflict of interest

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexis R. Mauger.

Additional information

Communicated by Alain Martin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Foster, J., Taylor, L., Chrismas, B.C.R. et al. The influence of acetaminophen on repeated sprint cycling performance. Eur J Appl Physiol 114, 41–48 (2014). https://doi.org/10.1007/s00421-013-2746-0

Download citation

Keywords

  • Pain
  • Central regulation
  • Power output
  • Afferent feedback
  • Fatigue
  • Paracetamol