The effect of an even-pacing strategy on exercise tolerance in well-trained cyclists

Abstract

Purpose

Previous research has suggested that the optimal pacing strategy for self-paced exercise lasting >4 min is a uniform distribution of work, but this posit is not well established for prolonged endurance events. This study examined the utility of even pacing during 20 km cycling time trials (TTs).

Methods

Fifteen well-trained male cyclists (\(\dot{V}\)O2max = 4.80 ± 0.38 L min−1) completed three best effort self-paced (SP) simulated 20 km TTs, followed by two even-paced trials. In one even-paced trial, participants cycled to exhaustion (EPtlim) at a fixed intensity equivalent to their best SP performance. In the other EP trial, participants were instructed to maintain this target intensity for a distance of 20 km, but the actual intensity was free to vary depending on the effort and cadence of the cyclist (EP-maintained). Cardiorespiratory, blood lactate and perceptual (RPE and affect) measures were assessed throughout.

Results

Nine out of fifteen cyclists failed the EPtlim task, completing 51–83 % (10.3–15.3 km) of the work done in their SP trial. Failure as a result of even pacing was associated with a faster rise in blood lactate, attainment of a higher relative intensity during SP and a moderate fast starting strategy. This failure was independent of the nature of the even-paced task.

Conclusion

By adopting an uneven, parabolic distribution of work, cyclists in this study were able to achieve an average intensity during self-paced exercise in excess of their maximum sustainable power output. A subsequent matched even-paced bout resulted in cumulative metabolic stress that could not be managed by moment-to-moment changes in power output. These results challenge the notion that strict even pacing is optimal for endurance time trial events.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abbiss CR, Ross ML, Garvican LA, Ross N, Pottgiesser T, Gregory J, Martin DT (2013) The distribution of pace adopted by cyclists during a cross-country mountain bike world championships. J Sports Sci 31(7):787–794. doi:10.1080/02640414.2012.751118

    PubMed  Article  Google Scholar 

  2. Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2009) Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol 587(Pt 1):271–283. doi:10.1113/jphysiol.2008.163303

    PubMed  Article  CAS  Google Scholar 

  3. Atkinson G, Davison R, Jeukendrup A, Passfield L (2003) Science and cycling: current knowledge and future directions for research. J Sports Sci 21(9):767–787

    PubMed  Article  Google Scholar 

  4. Atkinson G, Peacock O, Passfield L (2007a) Variable versus constant power strategies during cycling time-trials: Prediction of time savings using an up-to-date mathematical model. J Sports Sci 25(9):1001–1009

    PubMed  Article  CAS  Google Scholar 

  5. Atkinson G, Peacock O, St Clair Gibson A, Tucker R (2007b) Distribution of power output during cycling: Impact and mechanisms. Sports Med 37(8):647–667

    PubMed  Article  Google Scholar 

  6. Billat VL, Wesfreid E, Kapfer C, Koralsztein JP, Meyer Y (2006) Nonlinear dynamics of heart rate and oxygen uptake in exhaustive 10,000 m runs: Influence of constant vs. Freely paced. J Physiol Sci 56(1):103–111. doi:physiolsci/R2028

    PubMed  Article  Google Scholar 

  7. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381

    PubMed  Article  CAS  Google Scholar 

  8. Burnley M, Vanhatalo A, Jones AM (2012) Distinct profiles of neuromuscular fatigue during muscle contractions below and above the critical torque in humans. J Appl Physiol 113(2):215–223. doi:10.1152/japplphysiol.0.0022.2012

    PubMed  Article  Google Scholar 

  9. Corbett J (2009) An analysis of the pacing strategies adopted by elite athletes during track cycling. Int J Sports Physiol Perform 4(2):195–205

    PubMed  Google Scholar 

  10. de Koning JJ, Foster C, Bakkum A, Kloppenburg S, Thiel C, Joseph T, Cohen J, Porcari JP (2011) Regulation of pacing strategy during athletic competition. PLoS ONE 6(1):e15863. doi:10.1371/journal.pone.0015863

    PubMed  Article  Google Scholar 

  11. Decorte N, Lafaix PA, Millet GY, Wuyam B, Verges S (2012) Central and peripheral fatigue kinetics during exhaustive constant-load cycling. Scand J Med Sci Sports 22(3):381–391. doi:10.1111/j.1600-0838.2010.01167.x

    PubMed  Article  CAS  Google Scholar 

  12. Duc S, Betik A-C, Grappe F (2004) Emg activity does not change during a time trial in competitive cyclists. Int J Sports Med 26(02):145–150

    Article  Google Scholar 

  13. Foster C, Snyder AC, Thompson NN, Green MA, Foley M, Schrager M (1993) Effect of pacing strategy on cycle time trial performance. Med Sci Sports Exerc 25(3):383–388

    PubMed  Article  CAS  Google Scholar 

  14. Foster C, Schrager M, Snyder AC, Thompson NN (1994) Pacing strategy and athletic performance. Sports Med 17(2):77–85

    PubMed  Article  CAS  Google Scholar 

  15. Froyd C, Millet GY, Noakes TD (2013) The development of peripheral fatigue and short-term recovery during self-paced high-intensity exercise. J Physiol 591(5):1339–1346. doi:10.1113/jphysiol.2012.245316

    PubMed  Article  Google Scholar 

  16. Fukuba Y, Whipp BJ (1999) A metabolic limit on the ability to make up for lost time in endurance events. J Appl Physiol 87(2):853–861

    PubMed  CAS  Google Scholar 

  17. Gordon S (2005) Optimising distribution of power during a cycling time trial. Sports Eng 8(2):81–90

    Article  Google Scholar 

  18. Gosztyla AE, Edwards DG, Quinn TJ, Kenefick RW (2006) The impact of different pacing strategies on five-kilometer running time trial performance. J Strength Cond Res 20(4):882–886. doi:10.1519/R-19275.1

    PubMed  Google Scholar 

  19. Green JM, Sapp AL, Pritchett RC, Bishop PA (2010) Pacing accuracy in collegiate and recreational runners. Eur J Appl Physiol 108(3):567–572. doi:10.1007/s00421-009-1257-5

    PubMed  Article  Google Scholar 

  20. Ham DJ, Knez WL (2009) An evaluation of 30-km cycling time trial (tt30) pacing strategy through time-to-exhaustion at average tt30 pace. J Strength Cond Res 23(3):1016–1021. doi:10.1519/JSC.0b013e3181a30f8f

    PubMed  Article  Google Scholar 

  21. Hopkins WG (2000) Measures of reliability in sports medicine and science. Sports Med 30(1):1–15

    PubMed  Article  CAS  Google Scholar 

  22. Hull JH, Ansley P, Ansley L (2008) Human tissue act: Implications for sports science. Br J Sports Med 42(4):236–237. doi:10.1136/bjsm.2007.043307

    PubMed  Article  Google Scholar 

  23. Jones AM (2007) Middle- and long- distance running. In: Winter EM, Jones AM, Davison RC, Bromley PD, Mercer TH (eds) Bases sport and exercise physiology testing guidelines, vol 1., sport testingRoutledge, New York, pp 147–154

    Google Scholar 

  24. Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC (2008) Muscle metabolic responses to exercise above and below the “critical power” assessed using 31p-mrs. Am J Physiol Regul Integr Comp Physiol 294(2):R585–R593. doi:10.1152/ajpregu.0.0731.2007

    PubMed  Article  CAS  Google Scholar 

  25. Kennedy MD, Bell GJ (2003) Development of race profiles for the performance of a simulated 2000-m rowing race. Can J Appl Physiol 28(4):536–546

    PubMed  Article  Google Scholar 

  26. Lander PJ, Butterly RJ, Edwards AM (2009) Self-paced exercise is less physically challenging than enforced constant pace exercise of the same intensity: Influence of complex central metabolic control. Br J Sports Med 43(10):789–795. doi:10.1136/bjsm.2008.056085

    PubMed  Article  CAS  Google Scholar 

  27. Marcora SM, Staiano W, Manning V (2009) Mental fatigue impairs physical performance in humans. J Appl Physiol 106(3):857–864. doi:10.1152/japplphysiol.9.1324.2008

    PubMed  Article  Google Scholar 

  28. Mattern CO, Kenefick RW, Kertzer R, Quinn TJ (2001) Impact of starting strategy on cycling performance. Int J Sports Med 22(5):350–355. doi:10.1055/s-2001-15644

    PubMed  Article  CAS  Google Scholar 

  29. Mauger AR, Neuloh J, Castle PC (2012) Analysis of pacing strategy selection in elite 400-m freestyle swimming. Med Sci Sports Exerc 44(11):2205–2212. doi:10.1249/MSS.0b013e3182604b84

    PubMed  Article  Google Scholar 

  30. Muehlbauer T, Melges T (2011) Pacing patterns in competitive rowing adopted in different race categories. J Strength Cond Res 25(5):1293–1298. doi:10.1519/JSC.0b013e3181d6882b

    PubMed  Article  Google Scholar 

  31. Newell J, Aitchison T, Grant S (2010) Statistics for sports and exercise science: a practical approach. Pearson Education, Harlow

    Google Scholar 

  32. Padilla S, Mujika I, Angulo F, Goiriena JJ (2000a) Scientific approach to the 1-h cycling world record: A case study. J Appl Physiol 89(4):1522–1527

    PubMed  CAS  Google Scholar 

  33. Padilla S, Mujika I, Orbananos J, Angulo F (2000b) Exercise intensity during competition time trials in professional road cycling. Med Sci Sports Exerc 32(4):850–856

    PubMed  Article  CAS  Google Scholar 

  34. Palmer GS, Hawley JA, Dennis SC, Noakes TD (1994) Heart rate responses during a 4-d cycle stage race. Med Sci Sports Exerc 26(10):1278–1283

    PubMed  Article  CAS  Google Scholar 

  35. Rejeski WJ (1985) Perceived exertion: an active or passive process? J Sport Psychol 7(4):371–378

    Google Scholar 

  36. Robergs RA, Dwyer D, Astorino T (2010) Recommendations for improved data processing from expired gas analysis indirect calorimetry. Sports Med 40(2):95–111. doi:10.2165/11319670-000000000-00000

    PubMed  Article  Google Scholar 

  37. Saunders MJ, Evans EM, Arngrimsson SA, Allison JD, Warren GL, Cureton KJ (2000) Muscle activation and the slow component rise in oxygen uptake during cycling. Med Sci Sports Exerc 32(12):2040–2045

    PubMed  Article  CAS  Google Scholar 

  38. Shinohara M, Moritani T (1992) Increase in neuromuscular activity and oxygen uptake during heavy exercise. Ann Physiol Anthrop 11(3):257–262

    Article  CAS  Google Scholar 

  39. Stone MR, Thomas K, Wilkinson M, Jones AM, St Clair Gibson A, Thompson KG (2012) Effects of deception on exercise performance: Implications for determinants of fatigue in humans. Med Sci Sports Exerc 44(3):534–541. doi:10.1249/MSS.0b013e318232cf77

    PubMed  Article  Google Scholar 

  40. Thomas K, Stone MR, Thompson KG, St Clair Gibson A, Ansley L (2012a) The effect of self- even- and variable-pacing strategies on the physiological and perceptual response to cycling. Eur J Appl Physiol 112(8):3069–3078. doi:10.1007/s00421-011-2281-9

    PubMed  Article  Google Scholar 

  41. Thomas K, Stone MR, Thompson KG, St Clair Gibson A, Ansley L (2012b) Reproducibility of pacing strategy during simulated 20-km cycling time trials in well-trained cyclists. Eur J Appl Physiol 112(1):223–229. doi:10.1007/s00421-011-1974-4

    PubMed  Article  Google Scholar 

  42. Thompson KG, MacLaren DP, Lees A, Atkinson G (2003) The effect of even, positive and negative pacing on metabolic, kinematic and temporal variables during breaststroke swimming. Eur J Appl Physiol 88(4–5):438–443. doi:10.1007/s00421-002-0715-0

    PubMed  Article  CAS  Google Scholar 

  43. Tucker R, Bester A, Lambert EV, Noakes TD, Vaughan CL, St Clair Gibson A (2006a) Non-random fluctuations in power output during self-paced exercise. Br J Sports Med 40(11):912–917

    PubMed  Article  CAS  Google Scholar 

  44. Tucker R, Lambert MI, Noakes TD (2006b) An analysis of pacing strategies during men’s world-record performances in track athletics. Int J Sports Physiol Perform 1(3):233–245

    PubMed  Google Scholar 

  45. Vanhatalo A, Jones AM, Burnley M (2011) Application of critical power in sport. Int J Sports Physiol Perform 6(1):128–136

    PubMed  Google Scholar 

  46. Wilberg RB, Pratt J (1988) A survey of the race profiles of cyclists in the pursuit and kilo track events. Can J Sport Sci 13(4):208–213

    PubMed  CAS  Google Scholar 

  47. WMA (2008) World medical association declaration of helsinki. Ethical principles for medical research involving human subjects. http://www.wma.net/en/30publications/10policies/b3/17c.pdf

Download references

Acknowledgments

Funding for this research was provided by the Research and Development Fund, Northumbria University.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kevin Thomas.

Additional information

Communicated by Peter Krustrup.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thomas, K., Stone, M., St Clair Gibson, A. et al. The effect of an even-pacing strategy on exercise tolerance in well-trained cyclists. Eur J Appl Physiol 113, 3001–3010 (2013). https://doi.org/10.1007/s00421-013-2734-4

Download citation

Keywords

  • Pacing strategy
  • Cycling
  • Time trial
  • Fatigue