Skip to main content

Acute low-load resistance exercise with and without blood flow restriction increased protein signalling and number of satellite cells in human skeletal muscle

Abstract

Purpose

To investigate hypertrophic signalling after a single bout of low-load resistance exercise with and without blood flow restriction (BFR).

Methods

Seven subjects performed unilateral knee extensions at 30 % of their one repetition maximum. The subjects performed five sets to failure with BFR on one leg, and then repeated the same amount of work with the other leg without BFR. Biopsies were obtained from m. vastus lateralis before and 1, 24 and 48 h after exercise.

Results

At 1-h post-exercise, phosphorylation of p70S6KThr389 and p38MAPKThr180/Tyr182 was elevated in the BFR leg, but not in the free-flow leg. Phospho-p70S6KThr389 was elevated three- to fourfold in both legs at 24-h post-exercise, but back to baseline at 48 h. The number of visible satellite cells (SCs) per muscle fibre was increased for all post-exercise time points and in both legs (33–53 %). The proportion of SCs with cytoplasmic extensions was elevated at 1-h post in the BFR leg and the number of SCs positive for myogenin and/or MyoD was increased at 1- and 24-h post-exercise for both legs combined.

Conclusion

Acute low-load resistance exercise with BFR resulted in early (1 h) and late (24 h) enhancement of phospho-p70S6KThr389, an early response of p38MAPK, and an increased number of SCs per muscle fibre. Enhanced phospho-p70S6KThr389 at 24-h post-exercise and increases in SC numbers were seen also in the free-flow leg. Implications of these findings for the hypertrophic effects of fatiguing low-load resistance exercise with and without BFR are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abe T, Yasuda T, Midorikawa T, Sato Y, Kearns CF, Inoue K, Koizumi K, Ishii N (2005) Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily kaatsu resistance training. Int J Kaatsu Train Res 1:7–14

    Google Scholar 

  • Anderson JE (2000) A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11:1859–1874

    PubMed  Article  CAS  Google Scholar 

  • Antharavally BS, Carter B, Bell PA, Krishna Mallia A (2004) A high-affinity reversible protein stain for Western blots. Anal Biochem 329:276–280

    PubMed  Article  CAS  Google Scholar 

  • Boppart MD, Asp S, Wojtaszewski JF, Fielding RA, Mohr T, Goodyear LJ (2000) Marathon running transiently increases c-Jun NH2-terminal kinase and p38 activities in human skeletal muscle. J Physiol 526:663–669

    PubMed  Article  CAS  Google Scholar 

  • Burd NA, Holwerda AM, Selby KC, West DW, Staples AW, Cain NE, Cashaback JG, Potvin JR, Baker SK, Phillips SM (2010a) Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J Physiol 588:3119–3130

    PubMed  Article  CAS  Google Scholar 

  • Burd NA, West DW, Staples AW, Atherton PJ, Baker JM, Moore DR, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM (2010b) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS ONE 5(8):e12033

    PubMed  Article  Google Scholar 

  • Burd NA, West DW, Moore DR, Atherton PJ, Staples AW, Prior T, Tange JE, Rennie MJ, Baker SK, Phillips SM (2011) Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J Nutr 141:568–573

    PubMed  Article  CAS  Google Scholar 

  • Crameri RM, Langberg H, Magnusson P, Jensen CH, Schrøder HD, Olesen JL, Suetta C, Teisner B, Kjaer M (2004) Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. J Physiol 558:333–340

    PubMed  Article  CAS  Google Scholar 

  • Crenshaw AG, Hargens AR, Gershuni DH, Rydevik B (1988) Wide tourniquet cuffs more effective at lower inflation pressures. Acta Orthop Scand 59:447–451

    PubMed  Article  CAS  Google Scholar 

  • Cully M, Genevet A, Warne P, Treins C, Liu T, Bastien J, Baum B, Tapon N, Leevers SJ, Downward J (2010) A role for p38 stress-activated protein kinase in regulation of cell growth via TORC1. Mol Cell Biol 30:481–495

    PubMed  Article  CAS  Google Scholar 

  • Dreyer HC, Blanco CE, Sattler FR, Schroeder ET, Wiswell RA (2006) Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle Nerve 33:242–253

    PubMed  Article  Google Scholar 

  • Drummond MJ, Fujita S, Abe T, Dreyer HC, Volpi E, Rasmussen BB (2008) Human muscle gene expression following resistance exercise and blood flow restriction. Med Sci Sports Exerc 40:691–698

    PubMed  Article  CAS  Google Scholar 

  • Foster WH, Tidball JG, Wang Y (2012) p38γ activity is required for maintenance of slow skeletal muscle size. Muscle Nerve 45:266–273

    PubMed  Article  CAS  Google Scholar 

  • Fry CS, Glynn EL, Drummond MJ, Timmerman KL, Fujita S, Abe T, Dhanani S, Volpi E, Rasmussen BB (2010) Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol 108:1199–1209

    PubMed  Article  CAS  Google Scholar 

  • Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Volpi E, Rasmussen BB (2007) Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol 103:903–910

    PubMed  Article  CAS  Google Scholar 

  • Fujita T, Brechue WF, Kurita K, Sato Y, Abe T (2008) Increased muscle volume and strength following six days of low-intensity resistance training with restricted muscle blood flow. Int J Kaatsu Train Res 4:1–8

    Article  Google Scholar 

  • Graham B, Breault MJ, McEwen JA, Mcgraw RW (1993) Occlusion of arterial flow in the extremities at subsystolic pressures through the use of wide tourniquet cuffs. Clin Orthop 286:257–261

    PubMed  Google Scholar 

  • Gregory MA, Mars M (2004) Mobilisation of satellite cells following ischaemia and reperfusion in primate skeletal muscle. S Afr J Sports Med 16(1):17–24

    Google Scholar 

  • Guerra B, Gómez-Cabrera MC, Ponce-González JG, Martinez-Bello VE, Guadalupe-Grau A, Santana A, Sebastia V, Viña J, Calbet JA (2011) Repeated muscle biopsies through a single skin incision do not elicit muscle signaling, but IL-6 mRNA and STAT3 phosphorylation increase in injured muscle. J Appl Physiol 110:1708–1715

    PubMed  Article  CAS  Google Scholar 

  • Gundermann DM, Fry CS, Dickinson JM, Walker DK, Timmerman KL, Drummond MJ, Volpi E, Rasmussen BB (2012) Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise. J Appl Physiol 112:1520–1528

    PubMed  Article  CAS  Google Scholar 

  • Hanssen KE, Kvamme NH, Nilsen TS, Rønnestad B, Ambjørnsen IK, Norheim F, Kadi F, Hallèn J, Drevon CA, Raastad T (2012) The effect of strength training volume on satellite cells, myogenic regulatory factors, and growth factors. Scand J Med Sci Sports. doi:10.1111/j.1600-0838.2012.01452.x

  • Hara M, Tabata K, Suzuki T, Do MK, Mizunoya W, Nakamura M, Nishimura S, Tabata S, Ikeuchi Y, Sunagawa K, Anderson JE, Allen RE, Tatsumi R (2012) Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch. Am J Physiol Cell Physiol 302:C1741–C1750

    PubMed  Article  CAS  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    PubMed  CAS  Google Scholar 

  • Holterman CE, Rudnicki MA (2005) Molecular regulation of satellite cell function. Semin Cell Dev Biol 16:575–584

    PubMed  Article  CAS  Google Scholar 

  • Ito N, Ruegg UT, Kudo A, Miyagoe-Suzuki Y, Takeda S (2013) Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med 19:101–106

    PubMed  Article  CAS  Google Scholar 

  • Kadi F, Eriksson A, Holmner S, Thornell LE (1999) Effects of anabolic steroids on the muscle cells of strength-trained athletes. Med Sci Sports Exerc 31:1528–1534

    PubMed  Article  CAS  Google Scholar 

  • Karlsson HK, Nilsson PA, Nilsson J, Chibalin AV, Zierath JR, Blomstrand E (2004) Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. Am J Physiol Endocrinol Metab 287:E1–E7

    PubMed  Article  CAS  Google Scholar 

  • Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M Jr, Aihara AY, Fernandes Ada R, Tricoli V (2012) Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc 44:406–412

    PubMed  Article  CAS  Google Scholar 

  • Lindström M, Thornell LE (2009) New multiple labelling method for improved satellite cell identification in human muscle: application to a cohort of power-lifters and sedentary men. Histochem Cell Biol 132:141–157

    PubMed  Article  Google Scholar 

  • Lindström M, Pedrosa-Domellöf F, Thornell LE (2010) Satellite cell heterogeneity with respect to expression of MyoD, myogenin, Dlk1 and c-Met in human skeletal muscle: application to a cohort of power lifters and sedentary men. Histochem Cell Biol 134:371–385

    PubMed  Article  Google Scholar 

  • Lovett FA, Cosgrove RA, Gonzalez I, Pell JM (2010) Essential role for p38alpha MAPK but not p38gamma MAPK in Igf2 expression and myoblast differentiation. Endocrinology 151:4368–4380

    PubMed  Article  CAS  Google Scholar 

  • Mackey AL, Kjaer M, Charifi N, Henriksson J, Bojsen-Moller J, Holm L, Kadi F (2009) Assessment of satellite cell number and activity status in human skeletal muscle biopsies. Muscle Nerve 40:455–465

    PubMed  Article  Google Scholar 

  • Mackey AL, Holm L, Reitelseder S, Pedersen TG, Doessing S, Kadi F, Kjaer M (2011) Myogenic response of human skeletal muscle to 12 weeks of resistance training at light loading intensity. Scand J Med Sci Sports 21:773–782

    PubMed  Article  CAS  Google Scholar 

  • Madarame H, Neya M, Ochi E, Nakazato K, Sato Y, Ishii N (2008) Cross-transfer effects of resistance training with blood flow restriction. Med Sci Sports Exerc 40:258–263

    PubMed  Article  Google Scholar 

  • Manini TM, Vincent KR, Leeuwenburgh CL, Lees HA, Kavazis AN, Borst SE, Clark BC (2011) Myogenic and proteolytic mRNA expression following blood flow restricted exercise. Acta Physiol 201:255–263

    Article  CAS  Google Scholar 

  • McKay BR, Toth KG, Tarnopolsky MA, Parise G (2010) Satellite cell number and cell cycle kinetics in response to acute myotrauma in humans: immunohistochemistry versus flow cytometry. J Physiol 588:3307–3320

    PubMed  Article  CAS  Google Scholar 

  • Migiano MJ, Vingren JL, Volek JS, Maresh CM, Fragala MS, Ho JY, Thomas GA, Hatfield DL, Häkkinen K, Ahtiainen J, Earp JE, Kraemer WJ (2010) Endocrine response patterns to acute unilateral and bilateral resistance exercise in men. J Strength Cond Res 24:128–134

    PubMed  Article  Google Scholar 

  • Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, Phillips SM (2012) Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol 113:71–77

    PubMed  Article  CAS  Google Scholar 

  • Muir AR, Kanji AH, Allbrook D (1965) The structure of the satellite cells in skeletal muscle. J Anat 99:435–444

    PubMed  CAS  Google Scholar 

  • Nielsen JL, Aagaard P, Bech RD, Nygaard T, Hvid LG, Wernbom M, Suetta C, Frandsen U (2012) Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. J Physiol 590:4351–4361

    PubMed  Article  CAS  Google Scholar 

  • Norrbom J, Sällstedt EK, Fischer H, Sundberg CJ, Rundqvist H, Gustafsson T (2011) Alternative splice variant PGC-1{alpha}-b is strongly induced by exercise in human skeletal muscle. Am J Physiol Endocrinol Metab 301:E1092–E1098

    PubMed  Article  CAS  Google Scholar 

  • O’Neil TK, Duffy LR, Frey JW, Hornberger TA (2009) The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587:3691–3701

    PubMed  Article  Google Scholar 

  • Paulsen G, Egner IM, Drange M, Langberg H, Benestad HB, Fjeld JG, Hallén J, Raastad T (2010) A COX-2 inhibitor reduces muscle soreness, but does not influence recovery and adaptation after eccentric exercise. Scand J Med Sci Sports 20:e195–e207

    PubMed  Article  CAS  Google Scholar 

  • Pedersen BK (2011) Muscles and their myokines. J Exp Biol 214:337–346

    PubMed  Article  CAS  Google Scholar 

  • Petrella JK, Kim JS, Mayhew DL, Cross JM, Bamman MM (2008) Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol 104:1736–1742

    PubMed  Article  Google Scholar 

  • Radak Z, Naito H, Taylor AW, Goto S (2012) Nitric oxide: is it the cause of muscle soreness? Nitric Oxide 26:89–94

    PubMed  Article  CAS  Google Scholar 

  • Rahnert JA, Burkholder TJ (2013) High frequency electrical stimulation reveals a p38-mTOR signaling module correlated with force-time integral. J Exp Biol 216:2619–2631

    PubMed  Article  CAS  Google Scholar 

  • Scharf M, Neef S, Freund R, Geers-Knörr C, Franz-Wachtel M, Brandis A, Krone D, Schneider H, Groos S, Menon MB, Chang KC, Kraft T, Meissner JD, Boheler KR, Maier LS, Gaestel M, Scheibe RJ (2013) MAPKAPK2/3 regulate SERCA2a expression and fiber type composition to modulate skeletal muscle and cardiomyocyte function. Mol Cell Biol 33:2586–2602

    PubMed  Article  CAS  Google Scholar 

  • Staron RS, Malicky ES, Leonardi MJ, Falkel JE, Hagerman FC, Dudley GA (1990) Muscle hypertrophy and fast fiber type conversions in heavy resistance-trained women. Eur J Appl Physiol 60:71–79

    Article  CAS  Google Scholar 

  • Takarada Y, Sato Y, Ishii N (2002) Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol 86:308–314

    PubMed  Article  Google Scholar 

  • Takarada Y, Tsuruta T, Ishii N (2004) Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol 54:585–592

    PubMed  Article  Google Scholar 

  • Tannerstedt J, Apró W, Blomstrand E (2009) Maximal lengthening contractions induce different signaling responses in the type I and type II fibers of human skeletal muscle. J Appl Physiol 106:1412–1418

    PubMed  Article  CAS  Google Scholar 

  • Van de Vyver M, Myburgh KH (2012) Cytokine and satellite cell responses to muscle damage: interpretation and possible confounding factors in human studies. J Muscle Res Cell Motil 33:177–185

    PubMed  Article  CAS  Google Scholar 

  • Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ (2007) Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab 292:E151–E157

    PubMed  Article  CAS  Google Scholar 

  • Wernbom M, Augustsson J, Thomeé R (2006) Effects of vascular occlusion on muscular endurance in dynamic knee extension exercise at different submaximal loads. J Strength Cond Res 20:372–377

    PubMed  Google Scholar 

  • Wernbom M, Augustsson J, Raastad T (2008) Ischemic strength training: a low-load alternative to heavy resistance exercise? Scand J Med Sci Sports 18:401–416

    PubMed  Article  CAS  Google Scholar 

  • Wernbom M, Järrebring R, Andreasson MA, Augustsson J (2009) Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. J Strength Cond Res 23:2389–2395

    PubMed  Article  Google Scholar 

  • Wernbom M, Paulsen G, Nilsen TS, Hisdal J, Raastad T (2012) Contractile function and sarcolemmal permeability after acute low-load resistance exercise with blood flow restriction. Eur J Appl Physiol 112:2051–2063

    PubMed  Article  Google Scholar 

  • Wretman C, Lionikas A, Widegren U, Lännergren J, Westerblad H, Henriksson J (2001) Effects of concentric and eccentric contractions on phosphorylation of MAPK(erk1/2) and MAPK(p38) in isolated rat skeletal muscle. J Physiol 535:155–164

    PubMed  Article  CAS  Google Scholar 

  • Wu XN, Wang XK, Wu SQ, Lu J, Zheng M, Wang YH, Zhou H, Zhang H, Han J (2011) Phosphorylation of raptor by p38{beta} participates in arsenite-induced mTORC1 activation. J Biol Chem 286:1501–1511

    Google Scholar 

  • Zammit PS (2008) The muscle satellite cell: the story of a cell on the edge! In: Schiaffino S, Partridge T (eds) Skeletal muscle repair and regeneration. Springer, The Netherlands, pp 45–64

    Chapter  Google Scholar 

  • Zbinden-Foncea H, Deldicque L, Pierre N, Francaux M, Raymackers JM (2012) TLR2 and TLR4 activation induces p38 MAPK-dependent phosphorylation of S6 kinase 1 in C2C12 myotubes. Cell Biol Int 36:1107–1113

    PubMed  Article  CAS  Google Scholar 

  • Zhang G, Li YP (2012) p38beta MAPK upregulates atrogin1/MAFbx by specific phosphorylation of C/EBPbeta. Skelet Muscle 2(1):20

    Google Scholar 

  • Zheng M, Wang YH, Wu XN, Wu SQ, Lu BJ, Dong MQ, Zhang H, Sun P, Lin SC, Guan KL, Han J (2011) Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1 Nat Cell Biol 13:263–272

    Google Scholar 

Download references

Acknowledgments

The authors thank the subjects for their time and effort. This project was in part supported by a grant from the Swedish National Centre for Research in Sports (Grant: CIF 125/05).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Wernbom.

Additional information

Communicated by Martin Flueck.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wernbom, M., Apro, W., Paulsen, G. et al. Acute low-load resistance exercise with and without blood flow restriction increased protein signalling and number of satellite cells in human skeletal muscle. Eur J Appl Physiol 113, 2953–2965 (2013). https://doi.org/10.1007/s00421-013-2733-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2733-5

Keywords

  • Blood flow restricted exercise
  • Ischaemic resistance exercise
  • Anabolic signalling
  • P70S6 kinase