Skip to main content
Log in

No effect of menstrual cycle phase on glucose and glucoregulatory endocrine responses to prolonged exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 25 July 2013

Abstract

Introduction

Prolonged exercise requires increased utilization of blood glucose and adjustment of glucoregulatory hormones. Estrogen can reduce hepatic gluconeogenesis which could affect insulin concentrations. Amylin is co-secreted with insulin and controls influx of glucose into the blood.

Purpose

To determine the effect of menstrual cycle stage on glucose, leptin, and pancreatic hormone responses to prolonged (90 min) exercise.

Methods

Five healthy, eumenorrheic women (24.6 ± 5.1 years; 67.4 ± 1 kg) were monitored for 3 months to determine menstrual cycle length. Subjects completed a preliminary session to determine exercise workloads and, in a fasted condition, completed two randomized 90-min treadmill exercise trials at 60 % VO2max during the early follicular (EFX) and mid-luteal phase (MLX) of their menstrual cycle. Blood samples were analyzed for glucose, insulin, C-peptide, amylin, glucagon, leptin, and cortisol concentrations at rest (−30 and 0 min), during exercise (18, 36, 54, 72, and 90 min) and after 20 min of recovery.

Results

No changes in amylin, leptin, or cortisol occurred for EFX and MLX trials. A significant (p < 0.05) time effect occurred for glucose, insulin, and glucagon with reduced insulin across the exercise trial and increases in glucose and glucagon later in the trial, but there were no differences between the EFX and MLX trials.

Conclusions

Menstrual cycle stage does not affect glucose, insulin, C-peptide, amylin, glucagon, cortisol, and leptin responses to prolonged exercise; however, the exercise reduces insulin and increases glucose and glucagon concentrations. This is the first study to determine acute effects of exercise on amylin and other glucoregulatory hormone responses in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bonen A, Haynes FW, Graham TE (1991) Substrate and hormonal responses to exercise in women using oral contraceptives. J Appl Physiol 70(5):1917–1927

    PubMed  CAS  Google Scholar 

  • Castracane VD, Kraemer RR, Franken MA, Kraemer GR, Gimpel T (1998) Serum leptin concentration in women: effect of age, obesity, and estrogen administration. Fertil Steril 70(3):472–477

    Article  PubMed  CAS  Google Scholar 

  • Coggan AR (1991) Plasma glucose metabolism during exercise in humans. Sports Med 11:102–104

    Article  PubMed  CAS  Google Scholar 

  • Corr M, De Souza MJ, Toombs RJ, Williams NI (2011) Circulating leptin concentrations do not distinguish menstrual status in exercising women. Hum Reprod 26(3):685–694

    Article  PubMed  CAS  Google Scholar 

  • Devries MC, Hamadeh MJ, Phillips SM, Tarnopolsky MA (2006) Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise. Am J Physiol Regul Integr Comp Physiol 291(4):R1120–R1128

    Article  PubMed  CAS  Google Scholar 

  • Edelman SV, Caballero L (2006) Amylin replacement therapy in patients with type I diabetes. Diabetes Educ 32(suppl 3):119S–127S

    Article  PubMed  Google Scholar 

  • Höppener JW, Ahrén B, Lips CJ (2000) Islet amyloid and type 2 diabetes mellitus. N Engl J Med 343(6):411–419

    Article  PubMed  Google Scholar 

  • Horton TJ, Miller EK, Glueck D, Tench K (2002) No effect of menstrual cycle phase on glucose kinetics and fuel oxidation during moderate-intensity exercise. Am J Physiol Endocrinol Metab 282(4):E752–E762

    PubMed  CAS  Google Scholar 

  • Isacco L, Duché P, Boisseau N (2012) Influence of hormonal status on substrate utilization at rest and during exercise in the female population. Sports Med 42(4):327–342

    Article  PubMed  Google Scholar 

  • Johnson LG, Kraemer RR, Haltom R, Kraemer GR, Gaines HE, Castracane VD (1997) Effects of estrogen replacement therapy on dehydroepiandrosterone, dehydroepiandrosterone sulfate, and cortisol responses to exercise in postmenopausal women. Fertil Steril 68(5):836–843

    Article  PubMed  CAS  Google Scholar 

  • Johnson LG, Kraemer RR, Kraemer GR, Haltom RW, Cordill AE, Welsch MA, Durand RJ, Castracane VD (2002) Substrate utilization during exercise in postmenopausal women on hormone replacement therapy. Eur J Appl Physiol 88(3):282–287

    Article  PubMed  CAS  Google Scholar 

  • Kraemer RR, Heleniak R, Tryniecki JL, Kraemer GR, Okazaki N, Castracane VD (1995) Follicular and luteal phase hormonal responses to low-volume resistive exercise in women. Med Sci Sports Exerc 27(60):809–817

    PubMed  CAS  Google Scholar 

  • Kraemer RR, Johnson LG, Haltom RW, Kraemer GR, Gaines HE, Drapcho M, Castracane VD (1998) Effects of hormone replacement on growth hormone and prolactin exercise responses in postmenopausal women. J Appl Physiol 84(2):703–708

    PubMed  CAS  Google Scholar 

  • Kraemer RR, Acevedo EO, Synovitz LB, Hebert EP, Gimpel T, Castracane VD (2001) Leptin and steroid hormone responses to exercise in adolescent female runners over a 7-week season. Eur J Appl Physiol 86(1):85–91

    Article  PubMed  CAS  Google Scholar 

  • Kraemer RR, Acevedo EO, Synovitz LB, Durand RJ, Johnson LG, Petrella E, Fineman MS, Gimpel T, Castracane VD (2002) Glucoregulatory endocrine responses to intermittent exercise of different intensities: plasma changes in a pancreatic beta-cell peptide, amylin. Metabolism 51:657–663

    Article  PubMed  CAS  Google Scholar 

  • Kraemer RR, Francois MR, Sehgal K, Sirikul B, Valverde RA, Castracane VD (2011) Amylin and selective glucoregulatory peptide alterations during prolonged exercise. Med Sci Sports Exerc 43(8):1451–1456

    Article  PubMed  CAS  Google Scholar 

  • Kusakabe T, Ebihara K, Sakai T, Miyamoto L, Aotani D, Yamamoto Y, Yamamoto-Kataoka S, Aizawa-Abe M, Fujikura J, Hosoda K, Nakao K (2012) Amylin improves the effect of leptin on insulin sensitivity in leptin-resistant diet-induced obese mice. Am J Physiol Endocrinol Metab 302(8):E924–E931

    Article  PubMed  CAS  Google Scholar 

  • Nadal A, Alonso-Magdalena P, Soriano S, Quesada I, Ropero AB (2009) The pancreatic beta-cell as a target of estrogens and xenoestrogens: implications for blood glucose homeostasis and diabetes. Mol Cell Endocrinol 304(1–2):63–68

    Article  PubMed  CAS  Google Scholar 

  • Nyholm B, Orskov L, Hove KY, Gravholt CH, Møller N, Alberti KG, Moyses C, Kolterman O, Schmitz O (1999) The amylin analog pramlintide improves glycemic control and reduces postprandial glucagon concentrations in patients with type 1 diabetes mellitus. Metabolism 48:935–941

    Article  PubMed  CAS  Google Scholar 

  • Ojuka EO, Goyaram V, Smith JA (2012) The role of CaMKII in regulating GLUT4 expression in skeletal muscle. Am J Physiol Endocrinol Metab 303(3):E322–E331

    Article  PubMed  CAS  Google Scholar 

  • Polonsky K, Jaspan J, Pugh W, Cohen D, Schneider M, Schwartz T, Moossa AR, Tager H, Rubenstein AH (1983) Metabolism of C-peptide in the dog. In vivo demonstration of the absence of hepatic extraction. J Clin Invest 72:1114–1123

    Article  PubMed  CAS  Google Scholar 

  • Qi D, Cai K, Wang O, Li Z, Chen J, Deng B, Qian L, Le Y (2010) Fatty acids induce amylin expression and secretion by pancreatic beta-cells. Am J Physiol Endocrinol Metab 298(1):E99–E107

    Article  PubMed  CAS  Google Scholar 

  • Schmitz O, Brock B, Rungby J (2004) Amylin agonists: a novel approach in the treatment of diabetes. Diabetes 53(suppl 3):S233–S238

    Article  PubMed  CAS  Google Scholar 

  • Seufert J, Kieffer TJ, Habener JF (1999) Leptin inhibits insulin gene transcription and reverses hyperinsulinemia inleptin-deficient ob/ob mice. Proc Natl Acad Sci USA 19;96(2):674-679

    Google Scholar 

  • Trevaskis JL, Lei C, Koda JE, Weyer C, Parkes DG, Roth JD (2010a) Interaction of leptin and amylin in the long-term maintenance of weight loss in diet-induced obese rats. Obesity (Silver Spring) 18(1):21–26

    Article  CAS  Google Scholar 

  • Trevaskis JL, Parkes DG, Roth JD (2010b) Insights into amylin-leptin synergy. Trends Endocrinol Metab 21(8):473–479

    Article  PubMed  CAS  Google Scholar 

  • Turcotte LP, Richter EA, Kiens B (1992)Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans. Am J Physiol 262(6 Pt 1):E791–E799

    Google Scholar 

  • Wahren J, Ekberg K, Johansson J, Henriksson M, Pramanik A, Johansson BL, Rigler R, Jörnvall H (2000) Role of C-peptide in human physiology. Am J Physiol Endocrinol Metab 278:E759–E768

    PubMed  CAS  Google Scholar 

  • Wang M, Drucker DJ (1996) Activation of amylin gene transcription by LIM domain homeobox gene isl-1. Mol Endocrinol 10(3):243–251

    Article  PubMed  CAS  Google Scholar 

  • Zderic TW, Coggan AR, Ruby BC (2001) Glucose kinetics and substrate oxidation during exercise in the follicular and luteal phases. J Appl Physiol 90(2):447–453

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the subjects for their participation in the study. The results of the present study do not constitute endorsement by the American College of Sports Medicine. This study is dedicated to Michelle Francois (1956–2012); her wonderful contributions to our laboratory will be missed. This work was supported by the Laura Bush Institute for Women’s Health of Texas Tech University Health Sciences Center.

Conflict of interest

There is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert R. Kraemer.

Additional information

Communicated by Nigel A.S. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraemer, R.R., Francois, M., Webb, N.D. et al. No effect of menstrual cycle phase on glucose and glucoregulatory endocrine responses to prolonged exercise. Eur J Appl Physiol 113, 2401–2408 (2013). https://doi.org/10.1007/s00421-013-2677-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2677-9

Keywords

Navigation