Skip to main content
Log in

A meta-analytic approach to quantify the dose–response relationship between melatonin and core temperature

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

A melatonin-mediated reduction in body temperature could be useful as a “pre-cooling” intervention for athletes, as long as the melatonin dose is optimised so that substantial soporific effects are not induced. However, the melatonin-temperature dose–response relationship is unclear in humans. Individual studies have involved small samples of different sexes and temperature measurement sites. Therefore, we meta-analysed the effects of exogenous melatonin on body core temperature to quantify the dose–response relationship and to explore the influence of moderating variables such as sex and measurement site. Following a literature search, we meta-analysed 30 data-sets involving 193 participants and 405 ingestions of melatonin. The outcome was the mean difference (95 % confidence limits) in core temperature between the melatonin and placebo-controlled conditions in each study, weighted by the reciprocal of each standard error of the difference. The mean (95 % confidence interval) pooled reduction in core temperature was found to be 0.21 °C (0.18–0.24 °C). The dose–response relationship was found to be logarithmic (P < 0.0001). Doses of 0–5 mg reduced temperature by ~0.00–0.22 °C. Any further reductions in temperature were negligible with doses >5 mg. The pooled mean reduction was 0.13 °C (0.05–0.20 °C) for oral temperature vs 0.26 °C (0.20–0.32 °C) for tympanic and 0.22 °C (0.19–0.25 °C) for rectal temperature. In conclusion, our meta-regression revealed a logarithmic dose–response relationship between melatonin and its temperature lowering effects. A 5-mg dose of melatonin lowered core temperature by ~0.2 °C. Higher doses do not substantially increase this hypothermic effect and may induce greater soporific effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aizawa S, Tokura H, Morita T (2002) The administration of exogenous melatonin during the daytime lowers the thermoregulatory setpoint. J Therm Biol 27:115–199

    Article  CAS  Google Scholar 

  • Aoki K, Stephens DP, Zhao K, Kosiba WA, Johnson JM (2006) Modification of cutaneous vasodilator response to heat stress by daytime exogenous melatonin administration. Am J Physiol Regul Integr Comp Physiol 291:R619–R624

    Article  PubMed  CAS  Google Scholar 

  • Aoki K, Zhao K, Yamazaki F, Sone R, Alvarez GA, Kosiba WA, Johnson JA (2008) Exogenous melatonin administration modifies cutaneous vasoconstrictor response to whole body skin cooling in humans. J Pineal Res 44:141–148

    Google Scholar 

  • Arendt J (1998) Complex effects of melatonin. Therapie 53:479–488

    PubMed  CAS  Google Scholar 

  • Arendt J (2005) Melatonin: characteristics, concerns, and prospects. J Biol Rhythm 20:291–303

    Article  CAS  Google Scholar 

  • Arendt J, Skene DJ (2005) Melatonin as a chronobiotic. Sleep Med Rev 9:25–39

    Article  PubMed  Google Scholar 

  • Arngrimsson SA, Petitt DS, Stueck MG, Jorgensen DK, Cureton KJ (2004) Cooling vest worn during active warm-up improves 5-km run performance in the heat. J Appl Physiol 96:1867–1874

    Article  PubMed  Google Scholar 

  • Atkinson G, Drust B, Reilly T, Waterhouse J (2003) The relevance of melatonin to sports medicine and science. Sports Med 33:809–831

    Article  PubMed  Google Scholar 

  • Atkinson G, Holder A, Robertson C, Gant N, Drust B, Reilly T, Waterhouse J (2005a) Effects of melatonin on the thermoregulatory responses to intermittent exercise. J Pineal Res 39:353–359

    Article  PubMed  CAS  Google Scholar 

  • Atkinson G, Jones H, Edwards BJ, Waterhouse JM (2005b) Effects of daytime ingestion of melatonin on short-term athletic performance. Ergonomics 48:1512–1522

    Article  PubMed  CAS  Google Scholar 

  • Booth J, Marino F, Ward JJ (1997) Improved running performance in hot humid conditions following whole body precooling. Med Sci Sports Exerc 29:943–949

    Article  PubMed  CAS  Google Scholar 

  • Brzezinski A, Vangel MG, Wurtman RJ, Norrie G, Zhdanova I, Ben-Shushan A, Ford I (2005) Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev 9:41–50

    Article  PubMed  Google Scholar 

  • Burgess HJ, Fogg LF (2008) Individual differences in the amount and timing of salivary melatonin secretion. PLoS One 3:e3055

    Article  PubMed  Google Scholar 

  • Burgess HJ, Sletten T, Savic N, Gilbert SS, Dawson D (2001) Effects of bright light and melatonin on sleep propensity, temperature, and cardiac activity at night. J Appl Physiol 91:1214–1222

    PubMed  CAS  Google Scholar 

  • Byrne C, Lim CL (2007) The ingestible telemetric body core temperature sensor: a review of validity and exercise applications. Br J Sports Med 41:126–133

    Article  PubMed  Google Scholar 

  • Cagnacci A (1996) Melatonin in relation to physiology in adult humans. J Pineal Res 21:200–213

    Article  PubMed  CAS  Google Scholar 

  • Cagnacci A, Elliott JA, Yen SS (1992) Melatonin: a major regulator of the circadian rhythm of core temperature in humans. J Clin Endocrinol Metab 75:447–452

    Article  PubMed  CAS  Google Scholar 

  • Cagnacci A, Soldani R, Romagnolo C, Yen SS (1994) Melatonin-induced decrease of body temperature in women: a threshold event. Neuroendocrinology 60:549–552

    Article  PubMed  CAS  Google Scholar 

  • Cagnacci A, Soldani R, Yen SS (1995) Hypothermic effect of melatonin and nocturnal core body temperature decline are reduced in aged women. J Appl Physiol 78:314–317

    PubMed  CAS  Google Scholar 

  • Cagnacci A, Krauchi K, Wirz-Justice A, Volpe A (1997) Homeostatic versus circadian effects of melatonin on core body temperature in humans. J Biol Rhythm 12:509–517

    Article  CAS  Google Scholar 

  • Cook JS, Charity LS, Ray CA (2011) Melatonin differentially affects vascular blood flow in humans. Am J Physiol Heart Circ Physiol 300:H670–H674

    Article  PubMed  CAS  Google Scholar 

  • Dawson D, van den Heuvel CJ (1998) Integrating the actions of melatonin on human physiology. Ann Med 30:95–102

    Article  PubMed  CAS  Google Scholar 

  • Dawson D, Gibbon S, Singh P (1996) The hypothermic effect of melatonin on core body temperature: is more better? J Pineal Res 20:192–197

    Article  PubMed  CAS  Google Scholar 

  • Deacon S, Arendt J (1995) Melatonin-induced temperature suppression and its acute phase-shifting effects correlate in a dose-dependent manner in humans. Brain Res 688:77–85

    Article  PubMed  CAS  Google Scholar 

  • Deacon S, English J, Arendt J (1994) Acute phase-shifting effects of melatonin associated with suppression of core body temperature in humans. Neurosci Lett 178:32–34

    Article  PubMed  CAS  Google Scholar 

  • Deeks JJ, Altman DG, Bradburn MJ (2003) Statistical methods for examining heterogeneity and combining results from several studies in meta-analysis. In: Egger M, Davey Smith G, Altman DG (eds) Systematic reviews in health care: meta analysis in context. BMJ Publishing Group, London

    Google Scholar 

  • Dollins AB, Zhdanova IV, Wurtman RJ, Lynch HJ, Deng MH (1994) Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance. Proc Natl Acad Sci USA 91:1824–1828

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SS, van den Heuvel CJ, Kennaway DJ, Dawson D (1999) Peripheral heat loss: a predictor of the hypothermic response to melatonin administration in young and older women. Physiol Behav 66:365–370

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B (1999) Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 86:1032–1039

    PubMed  CAS  Google Scholar 

  • Harbord RM, Higgins JPT (2008) Meta-regression in Stata. Stata J 8:493–519

    Google Scholar 

  • Hasegawa H, Takatori T, Komura T, Yamasaki M (2006) Combined effects of pre-cooling and water ingestion on thermoregulation and physical capacity during exercise in a hot environment. J Sports Sci 24:3–9

    Article  PubMed  Google Scholar 

  • Higgins JPT, Green S (2008) Cochrane handbook for systematic reviews. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Hofman MA, Swaab DF (1993) Diurnal and seasonal rhythms of neuronal activity in the suprachiasmatic nucleus of humans. J Biol Rhythm 8:283–295

    Article  CAS  Google Scholar 

  • Hughes RJ, Badia P (1997) Sleep-promoting and hypothermic effects of daytime melatonin administration in humans. Sleep 20:124–131

    PubMed  CAS  Google Scholar 

  • Krauchi K (2007) The human sleep-wake cycle reconsidered from a thermoregulatory point of view. Physiol Behav 90:236–245

    Article  PubMed  Google Scholar 

  • Krauchi K, Wirz-Justice A (1994) Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. Am J Physiol 267:R819–R829

    PubMed  CAS  Google Scholar 

  • Krauchi K, Cajochen C, Wirz-Justice A (1997) A relationship between heat loss and sleepiness: effects of postural change and melatonin administration. J Appl Physiol 83:134–139

    PubMed  CAS  Google Scholar 

  • Lee DT, Haymes EM (1995) Exercise duration and thermoregulatory responses after whole body precooling. J Appl Physiol 79:1971–1976

    PubMed  CAS  Google Scholar 

  • Lewy AJ (1999) Melatonin as a marker and phase-resetter of circadian rhythms in humans. Adv Exp Med Biol 460:425–434

    Article  PubMed  CAS  Google Scholar 

  • Lim CL, Byrne C, Lee JK (2008) Human thermoregulation and measurement of body temperature in exercise and clinical settings. Ann Acad Med Singap 37:347–353

    PubMed  Google Scholar 

  • Luboshizsky R, Lavie P (1998) Sleep-inducing effects of exogenous melatonin administration. Sleep Med Rev 2:191–202

    Article  PubMed  CAS  Google Scholar 

  • Macchi MM, Bruce JN (2004) Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol 25:177–195

    Article  PubMed  CAS  Google Scholar 

  • Marino FE (2002) Methods, advantages, and limitations of body cooling for exercise performance. Br J Sports Med 36:89–94

    Article  PubMed  CAS  Google Scholar 

  • McLellan TM, Gannon GA, Zamecnik J, Gil V, Brown GM (1999) Low doses of melatonin and diurnal effects on thermoregulation and tolerance to uncompensable heat stress. J Appl Physiol 87:308–316

    PubMed  CAS  Google Scholar 

  • McLellan TM, Smith IF, Gannon GA, Zamecnik J (2000) Melatonin has no effect on tolerance to uncompensable heat stress in man. Eur J Appl Physiol 83:336–343

    Article  PubMed  CAS  Google Scholar 

  • Moran DS, Mendal L (2002) Core temperature measurement: methods and current insights. Sports Med 32:879–885

    Article  PubMed  Google Scholar 

  • Morris C, Atkinson G, Drust B, Marrin K, Gregson W (2009) Human core temperature responses during exercise and subsequent recovery: an important interaction between diurnal variation and measurement site. Chronobiol Int 26:560–575

    Article  PubMed  Google Scholar 

  • Reid K, Van den Heuvel C, Dawson D (1996) Day-time melatonin administration: effects on core temperature and sleep onset latency. J Sleep Res 5:150–154

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Mishima K (2001) Hypothermic action of exogenously administered melatonin is dose-dependent in humans. Clin Neuropharmacol 24:334–340

    Google Scholar 

  • Thompson SG, Higgins JPT (2002) How should meta-regression analyses be undertaken and interpreted? Stat Med 21:1559–1573

    Article  PubMed  Google Scholar 

  • Van den Heuvel CJ, Kennaway DJ, Dawson D (1999) Thermoregulatory and soporific effects of very low dose melatonin. Am J Physiol 276:E249–E254

    PubMed  Google Scholar 

  • van der Helm-Van Mil AHM, van Someren EJW, van den Boom R, van Buchem MA, de Craen AJM, Blauw GJ (2003) No Influence of melatonin on cerebral blood flow in humans. J Clin Endocrinol Metab 88:5989–5994

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Marrin.

Additional information

Communicated by George Havenith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrin, K., Drust, B., Gregson, W. et al. A meta-analytic approach to quantify the dose–response relationship between melatonin and core temperature. Eur J Appl Physiol 113, 2323–2329 (2013). https://doi.org/10.1007/s00421-013-2668-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2668-x

Keywords

Navigation