Skip to main content
Log in

Can muscle shortening alone, explain the energy cost of muscle contraction in vivo?

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Decreased whole-body energy cost of running has been associated with an increased Achilles tendon stiffness. It is usually assumed that this lower energy cost can be attributed to less muscle fascicle shortening with a stiffer tendon. Increased fiber shortening is an important determinant of muscle energetics in vitro. However, other factors, like increased muscle activation may be important when considering whole muscle energetics in vivo.

Methods

To determine the effects of a small additional muscle shortening on skeletal muscle energy requirement, 19 subjects performed 30 plantarflexions on two separate occasions: isometric (ISO) and isokinetic (KIN, 6.98 rad s–1), each with a target of 50 % of maximum isometric torque. Medial gastrocnemius muscle fascicle length (FL) was measured by ultrasound and rate of oxyhemoglobin (HbO2) desaturation was measured during blood flow occlusion using near-infrared spectroscopy.

Results

KIN resulted in significantly greater muscle shortening (23.8 ± 1.3 mm) than ISO (18.3 ± 1.0 mm, p < 0.001, mean ± SEM), and greater shortening velocity (KIN = 2.5 ± 0.3 FL s–1, ISO = 1.1 ± 0.1 FL s–1, p < 0.001). Rate of HbO2 desaturation was 19 ± 7 %, greater in KIN than ISO (p < 0.01), despite 19 ± 2 % lower mean torque (p < 0.001) and 9.8 ± 1.6 Nm s lower mean impulse per contraction (p < 0.001) in KIN compared to ISO. Root mean square for EMG was significantly greater (p < 0.05) during KIN (73 ± 3 %) than during ISO (63 ± 2 %).

Conclusion

These results illustrate that muscle energy requirement is greater when muscle fascicle shortening and/or velocity of shortening is increased, and suggest that greater activation contributes to that increased energy requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AT:

Achilles tendon

d L :

Fascicle-aponeurosis displacement

d ϴ :

Ankle joint displacement

EC:

Energy cost

EMG:

Electromyography

F:

Force

FL:

Fascicle length

HHbO2 :

Deoxyhemoglobin

HbO2 :

Oxyhemoglobin

ISO:

Isometric

KIN:

Isokinetic

LG:

Lateral gastrocnemius

M C :

Corrected moment

M M :

Measured moment

MA:

Moment arm

MG:

Medial gastrocnemius

MVC:

Maximal voluntary contraction

NIRS:

Near-infrared spectroscopy

RMS:

Root mean square

SOL:

Soleus

References

  • Albracht K, Arampatzis A (2006) Influence of the mechanical properties of the muscle-tendon unit on force generation in runners with different running economy. Biol Cybern 95:87–96

    Article  PubMed  Google Scholar 

  • Alexander RM (1991) Energy-saving mechanisms in walking and running. J Exp Biol 160:55–69

    PubMed  CAS  Google Scholar 

  • An KN, Takahashi K, Harrigan TP, Chao EY (1984) Determination of muscle orientations and moment arms. J Biomech Eng 106:280–282

    Article  PubMed  CAS  Google Scholar 

  • Arampatzis A, De Monte G, Karamanidis K, Morey-Klapsing G, Stafilidis S, Bruggemann GP (2006) Influence of the muscle-tendon unit’s mechanical and morphological properties on running economy. J Exp Biol 209:3345–3357

    Article  PubMed  Google Scholar 

  • Askew GN, Marsh RL (1998) Optimal shortening velocity (V/Vmax) of skeletal muscle during cyclical contractions: length-force effects and velocity-dependent activation and deactivation. J Exp Biol 201:1527–1540

    PubMed  CAS  Google Scholar 

  • Austin N, Nilwik R, Herzog W (2010) In vivo operational fascicle lengths of vastus lateralis during sub-maximal and maximal cycling. J Biomech 43:2394–2399

    Article  PubMed  Google Scholar 

  • Bergstrom M, Hultman E (1988) Energy cost and fatigue during intermittent electrical stimulation of human skeletal muscle. J Appl Physiol 65:1500–1505

    PubMed  CAS  Google Scholar 

  • Biewener AA (1998) Muscle function in vivo: a comparison of muscles used for elastic energy savings versus muscles used to generate mechanical power1. Integr Comp Biol 38:703

    Article  CAS  Google Scholar 

  • Chow JW, Darling WG (1999) The maximum shortening velocity of muscle should be scaled with activation. J Appl Physiol 86:1025–1031

    PubMed  CAS  Google Scholar 

  • Coast JR, Welch HG (1985) Linear increase in optimal pedal rate with increased power output in cycle ergometry. Eur J Appl Physiol Occup Physiol 53:339–342

    Article  PubMed  CAS  Google Scholar 

  • de Haan A, Jong J, Doorn J, Huijing P, Woittiez R, Westra H (1986) Muscle economy of isometric contractions as a function of stimulation time and relative muscle length. Pflügers Archiv Eur J Physiol 407:445–450

    Article  Google Scholar 

  • Ding H, Wang G, Lei W et al (2001) Non-invasive quantitative assessment of oxidative metabolism in quadriceps muscles by near infrared spectroscopy. Br J Sports Med 35:441–444

    Article  PubMed  CAS  Google Scholar 

  • Farris DJ, Trewartha G, McGuigan MP (2011) The effects of a 30-min run on the mechanics of the human Achilles tendon. Eur J Appl Physiol 112(2):653–660

    Article  PubMed  Google Scholar 

  • Fenn WO (1923) A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J Physiol 58:175–203

    PubMed  CAS  Google Scholar 

  • Fenn WO (1924) The relation between the work performed and the energy liberated in muscular contraction. J Physiol 58:373–395

    PubMed  CAS  Google Scholar 

  • Ferrari M, Mottola L, Quaresima V (2004) Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol 29:463–487

    Article  PubMed  Google Scholar 

  • Finni T, Ikegaw S, Lepola V, Komi P (2001) In vivo behavior of vastus lateralis muscle during dynamic performances. Eur J Sport Sci 1:1–13

    Article  Google Scholar 

  • Fletcher JR, Esau SP, Macintosh BR (2010) Changes in tendon stiffness and running economy in highly trained distance runners. Eur J Appl Physiol 110:1037–1046

    Article  PubMed  Google Scholar 

  • Foley JM, Meyer RA (2005) Energy cost of twitch and tetanic contractions of rat muscle estimated in situ by gated 31P NMR. NMR Biomed 6:32–38

    Article  Google Scholar 

  • Gabaldon AM, Nelson FE, Roberts TJ (2008) Relative shortening velocity in locomotor muscles: turkey ankle extensors operate at low V/V(max). Am J Physiol Regul Integr Comp Physiol 294:R200–R210

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    PubMed  CAS  Google Scholar 

  • Hamaoka T, McCully KK, Quaresima V, Yamamoto K, Chance B (2007) Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. J Biomed Opt 12:062105

    Article  PubMed  Google Scholar 

  • He ZH, Bottinelli R, Pellegrino MA, Ferenczi MA, Reggiani C (2000) ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition. Biophys J 79:945–961

    Article  PubMed  CAS  Google Scholar 

  • Heglund NC, Fedak MA, Taylor CR, Cavagna GA (1982) Energetics and mechanics of terrestrial locomotion. IV. Total mechanical energy changes as a function of speed and body size in birds and mammals. J Exp Biol 97:57–66

    PubMed  CAS  Google Scholar 

  • Herzog W, ter Keurs HEDJ (1988) Force–length relation of in vivo human rectus femoris muscles. Pflügers Archiv Eur J Physiol 411:642–647

    Article  CAS  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc Royal Soc Lond Series B Biol Sci 126:136–195

    Article  Google Scholar 

  • Hogan MC, Ingham E, Kurdak SS (1998) Contraction duration affects metabolic energy cost and fatigue in skeletal muscle. Am J Physiol Endocrinol Metab 274:E397–E402

    CAS  Google Scholar 

  • Homsher E, Mommaerts W, Ricchiuti N, Wallner A (1972) Activation heat, activation metabolism and tension-related heat in frog semitendinosus muscles. J Physiol (Lond) 220:601–625

    CAS  Google Scholar 

  • Im J, Nioka S, Chance B, Rundell KW (2001) Muscle oxygen desaturation is related to whole body VO2 during cross-country ski skating. Int J Sports Med 22:356–360

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa M, Pakaslahti J, Komi P (2007a) Medial gastrocnemius muscle behavior during human running and walking. Gait Posture 25:380–384

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa M, Pakaslahti J, Komi PV (2007b) Medial gastrocnemius muscle behavior during human running and walking. Gait Posture 25:380–384

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Akima H, Fukunaga T (2000) In vivo moment arm determination using B-mode ultrasonography. J Biomech 33:215–218

    Article  PubMed  CAS  Google Scholar 

  • Kram R, Taylor CR (1990) Energetics of running: a new perspective. Nature 346:265–267

    Article  PubMed  CAS  Google Scholar 

  • Kyröläinen H, Finni T, Avela J, Komi P (2003) Neuromuscular behaviour of the triceps surae muscle-tendon complex during running and jumping. Int J Sports Med 24:153–155

    Article  PubMed  Google Scholar 

  • Lichtwark GA, Bougoulias K, Wilson AM (2007) Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J Biomech 40:157–164

    Article  PubMed  CAS  Google Scholar 

  • MacIntosh BR, Neptune RR, Horton JF (2000) Cadence, power, and muscle activation in cycle ergometry. Med Sci Sports Exerc 32:1281

    Article  PubMed  CAS  Google Scholar 

  • Maganaris CN (2000) In vivo measurement-based estimations of the moment arm in the human tibialis anterior muscle-tendon unit. J Biomech 33:375–379

    Article  PubMed  CAS  Google Scholar 

  • Maganaris CN (2003) Force–length characteristics of the in vivo human gastrocnemius muscle. Clin Anat 16:215–223

    Article  PubMed  Google Scholar 

  • McCully KK, Hamaoka T (2000) Near-infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? Exerc Sport Sci Rev 28:123–127

    PubMed  CAS  Google Scholar 

  • Muramatsu T, Muraoka T, Takeshita D, Kawakami Y, Hirano Y, Fukunaga T (2001) Mechanical properties of tendon and aponeurosis of human gastrocnemius muscle in vivo. J Appl Physiol 90:1671–1678

    PubMed  CAS  Google Scholar 

  • Neary JP (2004) Application of near infrared spectroscopy to exercise sports science. Can J Appl Physiol 29:488–503

    Article  PubMed  Google Scholar 

  • Praagman M, Chadwick EK, van der Helm FC, Veeger HE (2006) The relationship between two different mechanical cost functions and muscle oxygen consumption. J Biomech 39:758–765

    Article  PubMed  CAS  Google Scholar 

  • Roberts TJ, Marsh RL, Weyand PG, Taylor CR (1997) Muscular force in running turkeys: the economy of minimizing work. Science 275:1113–1115

    Article  PubMed  CAS  Google Scholar 

  • Roberts TJ, Kram R, Weyand PG, Taylor CR (1998) Energetics of bipedal running. J Exp Biol 201:2745–2751

    PubMed  CAS  Google Scholar 

  • Russ DW, Elliott MA, Vandenborne K, Walter GA, Binder-Macleod SA (2002) Metabolic costs of isometric force generation and maintenance of human skeletal muscle. Am J Physiol Endocrinol Metab 282:E448–E457

    PubMed  CAS  Google Scholar 

  • Ryan TE, Erickson ML, Brizendine JT, Young HJ, McCully KK (2012) Noninvasive evaluation of skeletal muscle mitochondrial capacity with near-infrared spectroscopy: correcting for blood volume changes. J Appl Physiol 113:175–183

    Article  PubMed  CAS  Google Scholar 

  • Sih BL, Stuhmiller JH (2003) The metabolic cost of force generation. Med Sci Sports Exerc 35:623–629

    Article  PubMed  Google Scholar 

  • Spoor CW, van Leeuwen JL, Meskers CG, Titulaer AF, Huson A (1990) Estimation of instantaneous moment arms of lower-leg muscles. J Biomech 23:1247–1259

    Article  PubMed  CAS  Google Scholar 

  • Stainsby WN (1982) Energetic patterns of normally circulated mammalian muscle in situ. Fed Proc 41:185–188

    PubMed  CAS  Google Scholar 

  • Stainsby WN, Lambert CR (1979) Determination of oxygen uptake in skeletal muscle. Exerc Sport Sci Rev 7:125–151

    Article  PubMed  CAS  Google Scholar 

  • Taylor CR, Heglund NC (1982) Energetics and mechanics of terrestrial locomotion. Annu Rev Physiol 44:97–107

    Article  PubMed  CAS  Google Scholar 

  • Taylor CR, Schmidt-Nielsen K, Raab JL (1970) Scaling of energetic cost of running to body size in mammals. Am J Physiol 219:1104–1107

    PubMed  CAS  Google Scholar 

  • Taylor CR, Heglund NC, McMahon TA, Looney TR (1980) Energetic cost of generating muscular force during running: a comparison of large and small animals. J Exp Biol 86:9–18

    Google Scholar 

  • Woledge RC, Curtin NA, Homsher E (1985) Energetic aspects of muscle contraction. Monogr Physiol Soc 41:1–357

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Sciences and Engineering Research Council of Canada.

Conflict of interest

The authors report no commercial involvement which may bias the process of data collection, reporting and/or interpretation.

Ethical standard

The authors declare that the experiments comply with current Canadian laws and all experimental procedures were approved by the University of Calgary Conjoint Health Research Ethics Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. MacIntosh.

Additional information

Communicated by Guido Ferretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fletcher, J.R., Groves, E.M., Pfister, T.R. et al. Can muscle shortening alone, explain the energy cost of muscle contraction in vivo?. Eur J Appl Physiol 113, 2313–2322 (2013). https://doi.org/10.1007/s00421-013-2665-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2665-0

Keywords

Navigation