Skip to main content
Log in

Ipsi- and contralateral H-reflexes and V-waves after unilateral chronic Achilles tendon vibration

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Chronic Achilles tendon vibration has previously shown its effectiveness in improving plantar flexor’s strength and activation capacities. The present study investigated the related neural mechanisms by analyzing H-reflexes and V-waves of the soleus (SOL) and gastrocnemii (GM gastrocnemius medialis; GL gastrocnemius lateralis) muscles under maximal isometric plantar flexion. Moreover, recordings were conducted bilaterally to address potential crossed effects. 11 subjects were engaged in this study. Maximal voluntary contraction and superimposed H-reflexes and V-waves were quantified in both legs at baseline (PRE) and 2 weeks later to verify repeatability of data (CON). Then, subjects were retested after 14 days of daily unilateral Achilles tendon vibration (VIB; 1 h per day; frequency: 50 Hz). No changes were reported between PRE and CON data. In the VIB condition, there was an increase in MVC for both the vibrated (+9.1 %; p = 0.016) and non-vibrated (+10.2 %; p = 0.009) legs. The H-reflex increased by a mean 25 % in the vibrated SOL (p < 0.001), while it remained unchanged for the contralateral side (p = 0.531). The SOL V-wave also increased in the vibrated limb (+43.3 %; p < 0.001), as well as in the non-vibrated one (+41.9 %; p = 0.006). Furthermore, the GM V-wave increased by 37.8 % (p = 0.081) in the vibrated side and by 39.4 % (p = 0.03) in the non-vibrated side. However, no changes were reported for the GL muscles. While the present study confirmed the strength gains induced by chronic Achilles tendon vibration, the results indicated a cross-education phenomenon with differences in neural adaptations between the vibrated leg and non-vibrated leg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol 92(6):2309–2318

    PubMed  Google Scholar 

  • Cannon RJ, Cafarelli E (1987) Neuromuscular adaptations to training. J Appl Physiol 63(6):2396–2402

    CAS  PubMed  Google Scholar 

  • Carroll TJ, Herbert RD, Munn J, Lee M, Gandevia SC (2006) Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol 101(5):1514–1522

    Article  PubMed  Google Scholar 

  • Carroll TJ, Selvanayagam VS, Riek S, Semmler JG (2011) Neural adaptations to strength training: moving beyond transcranial magnetic stimulation and reflex studies. Acta Physiol (Oxf) 202(2):119–140

    Article  CAS  Google Scholar 

  • Delecluse C, Roelants M, Verschueren S (2003) Strength increase after whole-body vibration compared with resistance training. Med Sci Sports Exerc 35(6):1033–1041

    Article  PubMed  Google Scholar 

  • Duchateau J (1995) Bed rest induces neural and contractile adaptations in triceps surae. Med Sci Sports Exerc 27(12):1581–1589

    CAS  PubMed  Google Scholar 

  • Duclay J, Martin A (2005) Evoked H-reflex and V-wave responses during maximal isometric, concentric, and eccentric muscle contraction. J Neurophysiol 94(5):3555–3562

    Article  PubMed  Google Scholar 

  • Duclay J, Martin A, Robbe A, Pousson M (2008) Spinal reflex plasticity during maximal dynamic contractions after eccentric training. Med Sci Sports Exerc 40(4):722–734

    Article  PubMed  Google Scholar 

  • Ekblom MM (2010) Improvements in dynamic plantar flexor strength after resistance training are associated with increased voluntary activation and V-to-M ratio. J Appl Physiol 109(1):19–26

    Article  PubMed  Google Scholar 

  • Eklund G, Hagbarth KE (1966) Normal variability of tonic vibration reflexes in man. Exp Neurol 16(1):80–92

    Article  CAS  PubMed  Google Scholar 

  • Falempin M, In-Albon SF (1999) Influence of brief daily tendon vibration on rat soleus muscle in non-weight-bearing situation. J Appl Physiol 87(1):3–9

    CAS  PubMed  Google Scholar 

  • Fimland MS, Helgerud J, Solstad GM, Iversen VM, Leivseth G, Hoff J (2009) Neural adaptations underlying cross-education after unilateral strength training. Eur J Appl Physiol 107(6):723–730

    Article  PubMed  Google Scholar 

  • Forner-Cordero A, Steyvers M, Levin O, Alaerts K, Swinnen SP (2008) Changes in corticomotor excitability following prolonged muscle tendon vibration. Behav Brain Res 190(1):41–49

    Article  PubMed  Google Scholar 

  • Gondin J, Guette M, Maffiuletti NA, Martin A (2004) Neural activation of the triceps surae is impaired following 2 weeks of immobilization. Eur J Appl Physiol 93(3):359–365

    Article  CAS  PubMed  Google Scholar 

  • Gondin J, Duclay J, Martin A (2006) Soleus- and gastrocnemii-evoked V-wave responses increase after neuromuscular electrical stimulation training. J Neurophysiol 95(6):3328–3335

    Article  PubMed  Google Scholar 

  • Gottlieb GL, Agarwal GC (1971) Effects of initial conditions on the Hoffman reflex. J Neurol Neurosurg Psychiatry 34(3):226–230

    Article  CAS  PubMed  Google Scholar 

  • Hortobagyi T, Scott K, Lambert J, Hamilton G, Tracy J (1999) Cross-education of muscle strength is greater with stimulated than voluntary contractions. Mot Control 3(2):205–219

    CAS  Google Scholar 

  • Hugon M (1973) Methodology of the Hoffmann reflex in man. In: Desmedt JE (ed) Progress in clinical neurophysiology, new developments in electromyography and clinical neurophysiology, vol 3. Karger, Switzerland, pp 227–293

    Google Scholar 

  • Issurin VB, Liebermann DG, Tenenbaum G (1994) Effect of vibratory stimulation training on maximal force and flexibility. J Sports Sci 12(6):561–566

    Article  CAS  PubMed  Google Scholar 

  • Jackson SW, Turner DL (2003) Prolonged muscle vibration reduces maximal voluntary knee extension performance in both the ipsilateral and the contralateral limb in man. Eur J Appl Physiol 88(4–5):380–386

    Article  PubMed  Google Scholar 

  • Kossev A, Siggelkow S, Schubert M, Wohlfarth K, Dengler R (1999) Muscle vibration: different effects on transcranial magnetic and electrical stimulation. Muscle Nerve 22(7):946–948

    Article  CAS  PubMed  Google Scholar 

  • Kossev A, Siggelkow S, Kapels H, Dengler R, Rollnik JD (2001) Crossed effects of muscle vibration on motor-evoked potentials. Clin Neurophysiol 112(3):453–456

    Article  CAS  PubMed  Google Scholar 

  • Lagerquist O, Zehr EP, Docherty D (2006) Increased spinal reflex excitability is not associated with neural plasticity underlying the cross-education effect. J Appl Physiol 100(1):83–90

    Article  PubMed  Google Scholar 

  • Lapole T, Pérot C (2010) Effects of repeated Achilles tendon vibration on triceps surae force production. J Electromyogr Kinesiol 20(4):648–654

    Article  PubMed  Google Scholar 

  • Lapole T, Pérot C (2011) Effects of repeated Achilles tendon vibration on triceps surae stiffness and reflex excitability. J Electromyogr Kinesiol 21(1):87–94

    Article  PubMed  Google Scholar 

  • Lapole T, Pérot C (2012) Hoffmann reflex is increased after 14 days of daily repeated Achilles tendon vibration for the soleus but not for the gastrocnemii muscles. Appl Physiol Nutr Metab 37(1):14–20

    Article  PubMed  Google Scholar 

  • Lapole T, Canon F, Pérot C (2012a) Acute postural modulation of the soleus H-reflex after Achilles tendon vibration. Neurosci Lett 523(2):154–157

    Article  CAS  PubMed  Google Scholar 

  • Lapole T, Deroussen F, Pérot C, Petitjean M (2012b) Acute effects of Achilles tendon vibration on soleus and tibialis anterior spinal and cortical excitability. Appl Physiol Nutr Metab 37(4):657–663

    Article  PubMed  Google Scholar 

  • Lundbye-Jensen J, Nielsen JB (2008) Central nervous adaptations following 1 wk of wrist and hand immobilization. J Appl Physiol 105(1):139–151

    Article  PubMed  Google Scholar 

  • Luo J, McNamara B, Moran K (2005) The use of vibration training to enhance muscle strength and power. Sports Med 35(1):23–41

    Article  PubMed  Google Scholar 

  • Mezzarane RA, Kohn AF, Couto-Roldan E, Martinez L, Flores A, Manjarrez E (2012) Absence of effects of contralateral group I muscle afferents on presynaptic inhibition of Ia terminals in humans and cats. J Neurophysiol 108(4):1176–1185

    Article  PubMed  Google Scholar 

  • Misiaszek JE (2003) The H-reflex as a tool in neurophysiology: its limitations and uses in understanding nervous system function. Muscle Nerve 28(2):144–160

    Article  PubMed  Google Scholar 

  • Moritani T, deVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58(3):115–130

    CAS  PubMed  Google Scholar 

  • Munte TF, Jobges EM, Wieringa BM, Klein S, Schubert M, Johannes S, Dengler R (1996) Human evoked potentials to long duration vibratory stimuli: role of muscle afferents. Neurosci Lett 216(3):163–166

    Article  CAS  PubMed  Google Scholar 

  • Pensini M, Martin A (2004) Effect of voluntary contraction intensity on the H-reflex and V-wave responses. Neurosci Lett 367(3):369–374

    Article  CAS  PubMed  Google Scholar 

  • Ridding MC, McKay DR, Thompson PD, Miles TS (2001) Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin Neurophysiol 112(8):1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Rittweger J (2010) Vibration as an exercise modality: how it may work, and what its potential might be. Eur J Appl Physiol 108(5):877–904

    Article  PubMed  Google Scholar 

  • Roelants M, Delecluse C, Verschueren SM (2004) Whole-body-vibration training increases knee-extension strength and speed of movement in older women. J Am Geriatr Soc 52(6):901–908

    Article  PubMed  Google Scholar 

  • Sale DG (1988) Neural adaptation to resistance training. Med Sci Sports Exerc 20(5 Suppl):S135–S145

    CAS  PubMed  Google Scholar 

  • Schieppati M (1987) The Hoffmann reflex: a means of assessing spinal reflex excitability and its descending control in man. Prog Neurobiol 28(4):345–376

    Article  CAS  PubMed  Google Scholar 

  • Solstad GM, Fimland MS, Helgerud J, Iversen VM, Hoff J (2011) Test–retest reliability of v-wave responses in the soleus and gastrocnemius medialis. J Clin Neurophys Off Publ Am Electroencephalogr Soc 28(2):217–221

    Article  Google Scholar 

  • Steyvers M, Levin O, Verschueren SM, Swinnen SP (2003) Frequency-dependent effects of muscle tendon vibration on corticospinal excitability: a TMS study. Exp Brain Res 151(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Swayne O, Rothwell J, Rosenkranz K (2006) Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand. Clin Neurophysiol 117(4):855–863

    Article  PubMed  Google Scholar 

  • Tognella F, Mainar A, Vanhoutte C, Goubel F (1997) A mechanical device for studying mechanical properties of human muscles in vivo. J Biomech 30(10):1077–1080

    Article  CAS  PubMed  Google Scholar 

  • Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523(Pt 2):503–513

    Article  CAS  PubMed  Google Scholar 

  • Upton AR, McComas AJ, Sica RE (1971) Potentiation of “late” responses evoked in muscles during effort. J Neurol Neurosurg Psychiatry 34(6):699–711

    Article  CAS  PubMed  Google Scholar 

  • Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S (2004) Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res 19(3):352–359

    Article  PubMed  Google Scholar 

  • Vila-Cha C, Falla D, Correia MV, Farina D (2012) Changes in H reflex and V wave following short-term endurance and strength training. J Appl Physiol 112(1):54–63

    Article  PubMed  Google Scholar 

  • Voigt M, Chelli F, Frigo C (1998) Changes in the excitability of soleus muscle short latency stretch reflexes during human hopping after 4 weeks of hopping training. Eur J Appl Physiol Occup Physiol 78(6):522–532

    Article  CAS  PubMed  Google Scholar 

  • Zehr PE (2002) Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol 86(6):455–468

    Article  PubMed  Google Scholar 

  • Zhao X, Fan X, Song X, Shi L (2011) Daily muscle vibration amelioration of neural impairments of the soleus muscle during 2 weeks of immobilization. J Electromyogr Kinesiol 21(6):1017–1022

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants of the Centre National d’Etudes Spatiales (CNES, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantal Pérot.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapole, T., Canon, F. & Pérot, C. Ipsi- and contralateral H-reflexes and V-waves after unilateral chronic Achilles tendon vibration. Eur J Appl Physiol 113, 2223–2231 (2013). https://doi.org/10.1007/s00421-013-2651-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2651-6

Keywords

Navigation