Skip to main content

Effect of post-exercise protein–leucine feeding on neutrophil function, immunomodulatory plasma metabolites and cortisol during a 6-day block of intense cycling

Abstract

Whey protein and leucine ingestion following exercise increases muscle protein synthesis and could influence neutrophil function during recovery from prolonged intense exercise. We examined the effects of whey protein and leucine ingestion post-exercise on neutrophil function and immunomodulators during a period of intense cycling. In a randomized double-blind crossover, 12 male cyclists ingested protein/leucine/carbohydrate/fat (LEUPRO 20/7.5/89/22 g h−1, respectively) or isocaloric carbohydrate/fat control (CON 119/22 g h−1) beverages for 1–3 h post-exercise during 6 days of high-intensity training. Blood was taken pre- and post-exercise on days 1, 2, 4 and 6 for phorbol myristate acetate (PMA)-stimulated neutrophil superoxide (O2 ) production, immune cell counts, amino acid and lipid metabolism via metabolomics, hormones (cortisol, testosterone) and cytokines (interleukin-6, interleukin-10). During recovery on day 1, LEUPRO ingestion increased mean concentrations of plasma amino acids (glycine, arginine, glutamine, leucine) and myristic acid metabolites (acylcarnitines C14, myristoylcarnitine; and C14:1-OH, hydroxymyristoleylcarnitine) with neutrophil priming capacity, and reduced neutrophil O2 production (15–17 mmol O2  cell−1 ± 90 % confidence limits 20 mmol O2  cell−1). On day 2, LEUPRO increased pre-exercise plasma volume (6.6 ± 3.8 %) but haematological effects were trivial. LEUPRO supplementation did not substantially alter neutrophil elastase, testosterone, or cytokine concentrations. By day 6, however, LEUPRO reduced pre-exercise cortisol 21 % (±15 %) and acylcarnitine C16 (palmitoylcarnitine) during exercise, and increased post-exercise neutrophil O2 (33 ± 20 mmol O2  cell−1), relative to control. Altered plasma amino acid and acylcarnitine concentrations with protein–leucine feeding might partly explain the acute post-exercise reduction in neutrophil function and increased exercise-stimulated neutrophil oxidative burst on day 6, which could impact neutrophil-dependent processes during recovery from intense training.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR (2000) Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr 130(10):2413–2419

    PubMed  CAS  Google Scholar 

  2. Butterfield TA, Best TM, Merrick MA (2006) The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. J Athl Train 41(4):457–465

    PubMed  Google Scholar 

  3. Costa RJS, Oliver SJ, Laing SJ, Walters R, Bilzon JLJ, Walsh NP (2009) Influence of timing of postexercise carbohydrate-protein ingestion on selected immune indices. Int J Sport Nutr Exerc Metab 19(4):366–385

    PubMed  CAS  Google Scholar 

  4. Costa RJS, Walters R, Bilzon JLJ, Walsh NP (2011) Effects of immediate postexercise carbohydrate ingestion with and without protein on neutrophil degranulation. Int J Sport Nutr Exerc Metab 21(3):205–213

    CAS  Google Scholar 

  5. Cox JA, Jeng AY, Sharkey NA, Blumberg PM, Tauber AI (1985) Activation of the human neutrophil nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase by protein kinase C. J Clin Investig 76(5):1932–1938

    PubMed  Article  CAS  Google Scholar 

  6. Febbraio MA, Steensberg A, Keller C, Starkie RL, Nielsen HB, Krustrup P, Ott P, Secher NH, Pedersen BK (2003) Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. J Physiol 549(2):607–612

    PubMed  Article  CAS  Google Scholar 

  7. Forslid J, Hed J (1982) In vitro effect of hydrocortisone on the attachment and ingestion phases of immunoglobulin-G and complement 3b-mediated phagocytosis by human neutrophils. Infect Immun 38(3):811–816

    PubMed  CAS  Google Scholar 

  8. Gee I, Trull AK, Charman SC, Alexander GJM (2003) Sirolimus inhibits oxidative burst activity in transplant recipients. Transplantation 76(12):1766–1768

    PubMed  Article  CAS  Google Scholar 

  9. Giambelluca MS, Gende OA (2009) Effect of glycine on the release of reactive oxygen species in human neutrophils. Int Immunopharmacol 9(1):32–37

    PubMed  Article  CAS  Google Scholar 

  10. Goto M, Okazaki K, Kamijo YI, Ikegawa S, Masuki S, Miyagawa K, Nose H (2010) Protein and carbohydrate supplementation during 5-day aerobic training enhanced plasma volume expansion and thermoregulatory adaptation in young men. J Appl Physiol 109(4):1247–1255

    PubMed  Article  CAS  Google Scholar 

  11. Hack V, Strobel G, Weiss M, Weicker H (1994) PMN cell counts and phagocytic activity of highly trained athletes depend on training period. J Appl Physiol 77(4):1731–1735

    PubMed  CAS  Google Scholar 

  12. Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41(1):3–13

    PubMed  Article  Google Scholar 

  13. Kappel M, Poulsen TD, Galbo H, Pedersen BK (1998) Effects of elevated plasma noradrenaline concentration on the immune system in humans. Eur J Appl Physiol 79(1):93–98

    Article  CAS  Google Scholar 

  14. Kargotich S, Goodman C, Keast D, Morton AR (1998) The influence of exercise-induced plasma volume changes on the interpretation of biochemical parameters used for monitoring exercise, training and sport. Sports Med 26(2):101–117

    PubMed  Article  CAS  Google Scholar 

  15. Keller C, Steensberg A, Pilegaard H, Osada T, Saltin B, Pedersen BK, Neufer PD (2001) Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J 15(14):2748–2750

    PubMed  CAS  Google Scholar 

  16. Lagranha CJ, Senna SM, de Lima TM, Silva EPP, Doi SQ, Curi R, Pithon-Curi TC (2004) Beneficial effect of glutamine on exercise-induced apoptosis of rat neutrophils. Med Sci Sports Exerc 36(2):210–217

    PubMed  Article  CAS  Google Scholar 

  17. Lorenzo S, Halliwill JR, Sawka MN, Minson CT (2010) Heat acclimation improves exercise performance. J Appl Physiol 109(4):1140–1147

    PubMed  Article  Google Scholar 

  18. Matsumoto K, Koba T, Hamada K, Sakurai M, Higuchi T, Miyata H (2009) Branched-chain amino acid supplementation attenuates muscle soreness, muscle damage and inflammation during an intensive training program. J Sports Med Phys Fitness 49(4):424–431

    PubMed  CAS  Google Scholar 

  19. McIntyre TM, Reinhold SL, Prescott SM, Zimmerman GA (1987) Protein kinase C activity appears to be required for the synthesis of platelet-activating factor and leukotriene B4 by human neutrophils. J Biol Chem 262(32):15370–15376

    PubMed  CAS  Google Scholar 

  20. Moinard C, Caldefie-Chezet F, Walrand S, Vasson MP, Cynober L (2002) Evidence that glutamine modulates respiratory burst in stressed rat polymorphonuclear cells through its metabolism into arginine. Br J Nutr 88(6):689–695

    PubMed  Article  CAS  Google Scholar 

  21. Morozov V, Tsyplenkov P, Golburg N, Kalinski M (2006) The effects of high-intensity exercise on skeletal muscle neutrophil myeloperoxidase in untrained and trained rats. Eur J Appl Physiol 97(6):716–722

    PubMed  Article  CAS  Google Scholar 

  22. Nauseef WM (2007) How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev 219:88–102

    PubMed  Article  CAS  Google Scholar 

  23. Nelson AR, Phillips SM, Stellingwerff T, Rezzi S, Bruce SJ, Breton I, Thorimbert A, Guy PA, Clarke J, Broadbent S, Rowlands DS (2012) A protein-leucine supplement increases BCAA and nitrogen turnover but not performance. Med Sci Sports Exerc 44(1):57–68

    PubMed  Article  CAS  Google Scholar 

  24. Neubauer OD, König D, Wagner KH (2008) Recovery after an Ironman triathlon: sustained inflammatory responses and muscular stress. Eur J Appl Physiol 104(3):417–426

    PubMed  Article  Google Scholar 

  25. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136(3):521–534

    PubMed  Article  CAS  Google Scholar 

  26. Okazaki K, Hayase H, Ichinose T, Mitono H, Doi T, Nose H (2009a) Protein and carbohydrate supplementation after exercise increases plasma volume and albumin content in older and young men. J Appl Physiol 107(3):770–779

    Google Scholar 

  27. Okazaki K, Ichinose T, Mitono H, Chen M, Masuki S, Endoh H, Hayase H, Doi T, Nose H (2009b) Impact of protein and carbohydrate supplementation on plasma volume expansion and thermoregulatory adaptation by aerobic training in older men. J Appl Physiol 107(3):725–733

    Google Scholar 

  28. Pedersen BK, Hoffman-Goetz L (2000) Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 80(3):1055–1081

    PubMed  CAS  Google Scholar 

  29. Pithon-Curi TC, Levada AC, Lopes LR, Doi SQ, Curi R (2002) Glutamine plays a role in superoxide production and the expression of p47phox, p22phox, and gp91phox in rat neutrophils. Clin Sci 103(4):403–408

    PubMed  CAS  Google Scholar 

  30. Powell JD, Delgoffe GM (2010) The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 33(3):301–311

    PubMed  Article  CAS  Google Scholar 

  31. Pyne DB, Baker MS, Fricker PA, McDonald WA, Telford RD, Weidemann MJ (1995) Effects of an intense 12-wk training program by elite swimmers on neutrophil oxidative activity. Med Sci Sports Exerc 27(4):536–542

    PubMed  CAS  Google Scholar 

  32. Pyne DB, Smith JA, Baker MS, Telford RD, Weidermann MJ (2000) Neutrophil oxidative activity is differentially affected by exercise intensity and type. J Sci Med Sport 3(1):44–54

    PubMed  Article  CAS  Google Scholar 

  33. Rowlands DS, Thorp RM, Rossler K, Graham DF, Rockell MJ (2007) Effect of protein-rich feeding on recovery following intense exercise. Int J Sport Nutr Exerc Metab 17(6):521–543

    PubMed  CAS  Google Scholar 

  34. Rowlands DS, Rossler K, Thorp RM, Graham DF, Timmons BW, Stannard SR, Tarnopolsky MA (2008) Effect of dietary protein content during recovery from high-intensity cycling on subsequent performance and markers of stress, inflammation, and muscle damage in well-trained men. Appl Physiol Nutr Metab 33(1):39–51

    PubMed  Article  CAS  Google Scholar 

  35. Rusu D, Drouin R, Pouliot Y, Gauthier S, Poubelle PE (2009) A bovine whey protein extract can enhance innate immunity by priming normal human blood neutrophils. J Nutr 139(2):386–393

    PubMed  CAS  Google Scholar 

  36. Rusu D, Drouin R, Pouliot Y, Gauthier S, Poubelle PE (2010) A bovine whey protein extract stimulates human neutrophils to generate bioactive IL-1Ra through a NF-kB- and MAPK-dependent mechanism. J Nutr 140(2):382–391

    PubMed  Article  CAS  Google Scholar 

  37. Scharhag J, Meyer T, Auracher M, Gabriel HH, Kindermann W (2006) Effects of graded carbohydrate supplementation on the immune response in cycling. Med Sci Sports Exerc 38(2):286–292

    PubMed  Article  CAS  Google Scholar 

  38. Steensberg A, Fischer CP, Keller C, Moller K, Pedersen BK (2003) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 285(2):E433–E437

    PubMed  CAS  Google Scholar 

  39. Tada M, Ichiishi E, Saito R, Emoto N, Niwano Y, Kohno M (2009) Myristic acid, a side chain of phorbol myristate acetate (PMA), can activate human polymorphonuclear leukocytes to produce oxygen radicals more potently than PMA. J Clin Biochem Nutr 45(3):309–314

    PubMed  Article  Google Scholar 

  40. Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298(5):R1173–R1187

    PubMed  Article  CAS  Google Scholar 

  41. Tipton KD, Elliott TA, Cree MG, Wolf SE, Sanford AP, Wolfe RR (2004) Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc 36(12):2073–2081

    PubMed  CAS  Google Scholar 

  42. Walsh NP, Gleeson M, Shephard RJ, Gleeson M, Woods JA, Bishop NC, Fleshner M, Green C, Pedersen BK, Hoffman-Goetz L, Rogers CJ, Northoff H, Abbasi A, Simon P (2011) Position statement. Part one: immune function and exercise. Exerc Immunol Rev 17:6–63

    PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by a grant from Nestec Ltd., Vevey, Switzerland.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David S. Rowlands.

Additional information

Communicated by Guido Ferretti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 40 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nelson, A.R., Jackson, L., Clarke, J. et al. Effect of post-exercise protein–leucine feeding on neutrophil function, immunomodulatory plasma metabolites and cortisol during a 6-day block of intense cycling. Eur J Appl Physiol 113, 2211–2222 (2013). https://doi.org/10.1007/s00421-013-2650-7

Download citation

Keywords

  • Inflammatory response
  • Metabolomics
  • Superoxide
  • Endurance exercise
  • Cortisol