Skip to main content

Advertisement

Log in

Effect of acute DHEA administration on free testosterone in middle-aged and young men following high-intensity interval training

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

With advancing age, plasma testosterone levels decline, with free testosterone levels declining more significantly than total testosterone. This fall is thought to underlie the development of physical and mental weakness that occurs with advancing age. In addition, vigorous exercise can also lower total and free testosterone levels with the decline greatest in physically untrained men. The purpose of the study was to evaluate the effect of oral DHEA supplementation, a testosterone precursor, on free testosterone in sedentary middle-aged men during recovery from a high-intensity interval training (HIIT) bout of exercise. A randomized, double-blind, placebo-controlled crossover study was conducted for 8 middle-aged participants (aged 49.3 ± 2.4 years) and an additional 8 young control participants (aged 21.4 ± 0.3 years). Each participant received DHEA (50 mg) and placebo on separate occasions one night (12 h) before a 5-session, 2-min cycling exercise (100 % \(\dot{V} {\rm O}_{2{\rm max}}\)). While no significant age difference in total testosterone was found, middle-aged participants exhibited significantly lower free testosterone and greater luteinizing hormone (LH) levels than the young control group. Oral DHEA supplementation increased circulating DHEA-S and free testosterone levels well above baseline in the middle-aged group, with no significant effect on total testosterone levels. Total testosterone and DHEA-S dropped significantly until 24 h after HIIT for both age groups, while free testosterone of DHEA-supplemented middle-aged men remained unaffected. These results demonstrate acute oral DHEA supplementation can elevate free testosterone levels in middle-aged men and prevent it from declining during HIIT. Therefore, DHEA supplementation may have significant benefits related to HIIT adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahtiainen JP, Hulmi JJ, Kraemer WJ, Lehti M, Nyman K, Selanne H, Alen M, Pakarinen A, Komulainen J, Kovanen V, Mero AA, Hakkinen K (2009) Heavy resistance exercise training and skeletal muscle androgen receptor expression in younger and older men. Steroids 76:183–192

    Article  Google Scholar 

  • Almeida OP, Yeap BB, Hankey GJ, Jamrozik K, Flicker L (2008) Low free testosterone concentration as a potentially treatable cause of depressive symptoms in older men. Arch Gen Psychiatry 65:283–289

    Article  PubMed  CAS  Google Scholar 

  • Arlt W, Haas J, Callies F, Reincke M, Hubler D, Oettel M, Ernst M, Schulte HM, Allolio B (1999) Biotransformation of oral dehydroepiandrosterone in elderly men: significant increase in circulating estrogens. J Clin Endocrinol Metab 84:2170–2176

    Article  PubMed  CAS  Google Scholar 

  • Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, Montori VM (2010) Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 95:2536–2559

    Article  PubMed  CAS  Google Scholar 

  • Cumming DC, Vickovic MM, Wall SR, Fluker MR, Belcastro AN (1985) The effect of acute exercise on pulsatile release of luteinizing hormone in women runners. Am J Obstet Gynecol 153:482–485

    PubMed  CAS  Google Scholar 

  • Cumming DC, Wall SR, Quinney HA, Belcastro AN (1987) Decrease in serum testosterone levels with maximal intensity swimming exercise in trained male and female swimmers. Endocr Res 13:31–41

    PubMed  CAS  Google Scholar 

  • Gant N, Hutchinson H, Siiteri P, MacDonald P (1971) Study of the metabolic clearance rate of dehydroisoandrosterone sulfate in pregnancy. Am J Obstet Gynecol 111:555–563

    PubMed  CAS  Google Scholar 

  • Gibala MJ, McGee SL (2008) Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev 36:58–63

    Article  PubMed  Google Scholar 

  • Hakkinen K, Pakarinen A, Alen M, Kauhanen H, Komi PV (1988) Neuromuscular and hormonal adaptations in athletes to strength training in two years. J Appl Physiol 65:2406–2412

    PubMed  CAS  Google Scholar 

  • Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR (2001) Longitudinal effects of aging on serum total and free testosterone levels in healthy men. J Clin Endocrinol Metab 86:724–731

    Article  PubMed  CAS  Google Scholar 

  • Hayes FJ, Seminara SB, DeCruz S, Boepple PA, Crowley WF (2000) Aromatase inhibition in the human male reveals a hypothalamic site of estrogen feedback. J Clin Endocrinol Metab 85:3027–3035

    Article  PubMed  CAS  Google Scholar 

  • Herbst KL, Bhasin S (2004) Testosterone action on skeletal muscle. Curr Opin Clin Nutr Metab Care 7:271–277

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Chen M, Fang C, Lee W, Yang S, Kuo C (2006) A possible link between exercise-training adaptation and dehydroepiandrosterone sulfate- an oldest-old female study. Int J Med Sci 3:141–147

    Article  PubMed  CAS  Google Scholar 

  • Hyde Z, Flicker L, Almeida OP, Hankey GJ, McCaul KA, Chubb SA, Yeap BB (2010) Low free testosterone predicts frailty in older men: the health in men study. J Clin Endocrinol Metab 95:3165–3172

    Article  PubMed  CAS  Google Scholar 

  • Jensen J, Oftebro H, Breigan B, Johnsson A, Ohlin K, Meen HD, Strømme SB, Dahl HA (1991) Comparison of changes in testosterone concentrations after strength and endurance exercise in well trained men. Eur J Appl Physiol 63:467–471

    Article  CAS  Google Scholar 

  • Kraemer WJ, Gordon SE, Fleck SJ, Marchitelli LJ, Mello R, Dziados JE, Friedl K, Harman E, Maresh C, Fry AC (1991) Endogenous anabolic hormonal and growth factor responses to heavy resistance exercise in males and females. Int J Sports Med 12:228–235

    Article  PubMed  CAS  Google Scholar 

  • Kraemer WJ, Spiering BA, Volek JS, Ratamess NA, Sharman MJ, Rubin MR, French DN, Silvestre R, Hatfield DL, Van Heest JL, Vingren JL, Judelson DA, Deschenes MR, Maresh CM (2006) Androgenic responses to resistance exercise: effects of feeding and l-carnitine. Med Sci Sports Exerc 38:1288–1296

    Article  PubMed  CAS  Google Scholar 

  • Kroboth PD, Salek FS, Pittenger AL, Fabian TJ, Frye RF (1999) DHEA and DHEA-S: a review. J Clin Pharmacol 39:327–348

    Article  PubMed  CAS  Google Scholar 

  • Labrie F (2010) DHEA, important source of sex steroids in men and even more in women. Prog Brain Res 182:97–148

    Article  PubMed  CAS  Google Scholar 

  • Lamberts SWJ, van den Beld AW, van der Lely AJ (1997) The endocrinology of aging. Science 278:419–424

    Article  PubMed  CAS  Google Scholar 

  • Lane A, Duke J, Hackney A (2010) Influence of dietary carbohydrate intake on the free testosterone: cortisol ratio responses to short-term intensive exercise training. Eur J Appl Physiol 108:1125–1131

    Article  PubMed  CAS  Google Scholar 

  • Leder BZ, Rohrer JL, Rubin SD, Gallo J, Longcope C (2004) Effects of aromatase inhibition in elderly men with low or borderline-low serum testosterone levels. J Clin Endocrinol Metab 89:1174–1180

    Article  PubMed  CAS  Google Scholar 

  • Lee WC, Chen SM, Wu MC, Hou CW, Lai YC, Laio YH, Lin CH, Kuo CH (2006) The role of dehydroepiandrosterone levels on physiologic acclimatization to chronic mountaineering activity. High Alt Med Biol 7:228–236

    Article  PubMed  CAS  Google Scholar 

  • Liao YH, Liao KF, Kao CL, Chen CY, Huang CY, Chang WS, Ivy JL, Jeffrey R, Bernard JR, Lee SD, Kuo CH (2013) Effect of dehydroepiandrosterone administration on recovery from mix-type exercise training-induced muscle damage. Eur J Appl Physiol 113(1):99–107

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Wang SW, Wang RY, Wang PS (2001) Stimulatory effect of lactate on testosterone production by rat Leydig cells. J Cell Biochem 83:147–154

    Article  PubMed  CAS  Google Scholar 

  • MacConnie SE, Barkan A, Lampman RM, Schork MA, Beitins IZ (1986) Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. New Engl J Med 315:411–417

    Article  PubMed  CAS  Google Scholar 

  • McMurray R, Eubank T, Hackney A (1995) Nocturnal hormonal responses to resistance exercise. Eur J Appl Physiol 72:121–126

    Article  CAS  Google Scholar 

  • Moffat SD, Zonderman AB, Metter EJ, Kawas C, Blackman MR, Harman SM, Resnick SM (2004) Free testosterone and risk for Alzheimer disease in older men. Neurology 62:188–193

    Article  PubMed  CAS  Google Scholar 

  • Morales AJ, Haubrich RH, Hwang JY, Asakura H, Yen SSC (1998) The effect of six months treatment with a 100 mg daily dose of dehydroepiandrosterone (DHEA) on circulating sex steroids, body composition and muscle strength in age-advanced men and women. Clin Endocrinol 49:421–432

    Article  CAS  Google Scholar 

  • Nindl BC, Kraemer WJ, Deaver DR, Peters JL, Marx JO, Heckman JT, Loomis GA (2001) LH secretion and testosterone concentrations are blunted after resistance exercise in men. J Appl Physiol 91:1251–1258

    PubMed  CAS  Google Scholar 

  • Schmid P, Pusch HH, Wolf W, Pilger E, Pessenhofer H, Schwaberger G, Pristautz H, Purstner P (1982) Serum FSH, LH, and testosterone in humans after physical exercise. Int J Sports Med 03:84–89

    Article  CAS  Google Scholar 

  • Schnorr JA, Bray MJ, Veldhuis JD (2001) Aromatization mediates testosterone’s short-term feedback restraint of 24-Hour endogenously driven and acute exogenous gonadotropin-releasing hormone-stimulated luteinizing hormone and follicle-stimulating hormone secretion in young men. J Clin Endocrinol Metab 86:2600–2606

    Article  PubMed  CAS  Google Scholar 

  • Tremblay MS, Copeland JL, Van Helder W (2004) Effect of training status and exercise mode on endogenous steroid hormones in men. J Appl Physiol 96:531–539

    Article  PubMed  CAS  Google Scholar 

  • Tsai YM, Chou SW, Lin YC, Hou CW, Hung KC, Kung HW, Lin TW, Chen SM, Lin CY, Kuo CH (2006) Effect of resistance exercise on dehydroepiandrosterone sulfate concentrations during a 72-h recovery: relation to glucose tolerance and insulin response. Life Sci 79:1281–1286

    Article  PubMed  CAS  Google Scholar 

  • van den Beld AW, de Jong FH, Grobbee DE, Pols HAP, Lamberts SWJ (2000) Measures of bioavailable serum testosterone and estradiol and their relationships with muscle strength, bone density, and body composition in elderly men. J Clin Endocrinol Metab 85:3276–3282

    Article  PubMed  Google Scholar 

  • Wehr E, Pilz S, Boehm BO, März W, Grammer T, Obermayer-Pietsch B (2011) Low free testosterone is associated with heart failure mortality in older men referred for coronary angiography. Eur J Heart Fail 13:482–488

    Article  PubMed  CAS  Google Scholar 

  • Williams M, Dawood T, Ling S, Dai A, Lew R, Myles K, Funder J, Sudhir K, Komesaroff P (2004) Dehydroepiandrosterone increases endothelial cell proliferation in vitro and improves endothelial function in vivo by mechanisms independent of androgen and estrogen receptors. J Clin Endocrinol Metab 89:4708–4715

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Sekihara H, Omura M, Yanase T, Takayanagi R, Mune T, Yasuda K, Ishizuka T, Ueshiba H, Miyachi Y, Iwasaki T, Nakajima A, Nawata H (2007) Changes in serum sex hormone profiles after short-term low-dose administration of dehydroepiandrosterone (DHEA) to young and elderly persons. Endocr J 54:153–162

    Article  PubMed  CAS  Google Scholar 

  • Yang SC, Chen CY, Liao YH, Lin FC, Lee WC, Cho YM, Chen MT, Chou CH, Kuo CH (2005) Interactive effect of an acute bout of resistance exercise and dehydroepiandrosterone administration on glucose tolerance and serum lipids in middle-aged women. Chin J Physiol 48:23–29

    PubMed  CAS  Google Scholar 

  • Yeap BB, Almeida OP, Hyde Z, Norman PE, Chubb SAP, Jamrozik K, Flicker L (2007) In men older than 70 years, total testosterone remains stable while free testosterone declines with age. The Health in Men Study. Eur J Endocrinol 156:585–594

    Article  PubMed  CAS  Google Scholar 

  • Yeap BB, Hyde Z, Norman PE, Chubb SAP, Golledge J (2010) Associations of total testosterone, sex hormone-binding globulin, calculated free testosterone, and luteinizing hormone with prevalence of abdominal aortic aneurysm in older men. J Clin Endocrinol Metab 95:1123–1130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the excellent technical support provided by Rita Wang. This study was sponsored in part by National Science Council, grant number NSC 98-2410-H-154-009.

Conflict of interest

All authors declare no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Hua Kuo.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, TC., Lin, CH., Huang, CY. et al. Effect of acute DHEA administration on free testosterone in middle-aged and young men following high-intensity interval training. Eur J Appl Physiol 113, 1783–1792 (2013). https://doi.org/10.1007/s00421-013-2607-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2607-x

Keywords

Navigation