Skip to main content

Advertisement

Log in

The mechanics of running while approaching and jumping over an obstacle

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

When leaping an obstacle, the runner increases the vertical velocity of his/her centre of mass (COM) at takeoff to augment the amplitude and duration of the aerial phase over it. This study analyses the modification of the bouncing mechanism of running when approaching a barrier. The forces exerted by the feet on the ground are measured by a 13-m-long force platform during the four to nine running steps preceding the jump over a 0.45- to 0.85-m-high barrier, at an approaching speed between 9 and 21 km h−1. The movements of the COM are evaluated by time-integration of the forces and the stiffness of the bouncing system by computer simulation. The running mechanism is modified during the two steps preceding the barrier. During the contact period, two steps before the barrier, the leg-spring stiffness decreases; consequently, the COM is lowered and accelerated forward. Then during the contact period preceding the obstacle, the leg-spring stiffness increases and the COM is raised and accelerated upwards, whereas its forward velocity is reduced. During this phase, the leg-spring acts like a pole, which stores elastic energy and changes the direction of the velocity vector to release this energy in a vertical direction. At high speeds, this storage–release mechanism of elastic energy is sufficient to provide the energy necessary to leap the obstacle. On the contrary, at low speeds, the amount of elastic energy stored and released in the leg-spring is not sufficient to jump over the obstacle and additional positive muscular work must be done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexander RM (1992) A model of bipedal locomotion on compliant legs. Philos Trans R Soc Lond B Biol Sci 338(1284):189–198. doi:10.1098/rstb.1992.0138

    Article  PubMed  CAS  Google Scholar 

  • Begg RK, Sparrow WA, Lythgo ND (1998) Time–domain analysis of foot-ground reaction forces in negotiating obstacles. Gait Posture 7(2):99–109

    Article  PubMed  Google Scholar 

  • Blickhan R (1989) The spring–mass model for running and hopping. J Biomech 22(11–12):1217–1227. doi:0021-9290(89)90224-8

    Article  PubMed  CAS  Google Scholar 

  • Cavagna GA (1975) Force platforms as ergometers. J Appl Physiol 39(1):174–179

    PubMed  CAS  Google Scholar 

  • Cavagna GA, Dusman B, Margaria R (1968) Positive work done by a previously stretched muscle. J Appl Physiol 24(1):21–32

    PubMed  CAS  Google Scholar 

  • Cavagna GA, Komarek L, Mazzoleni S (1971) The mechanics of sprint running. J Physiol 217(3):709–721

    PubMed  CAS  Google Scholar 

  • Cavagna GA, Thys H, Zamboni A (1976) The sources of external work in level walking and running. J Physiol 262(3):639–657

    PubMed  CAS  Google Scholar 

  • Cavagna GA, Franzetti P, Heglund NC, Willems P (1988) The determinants of the step frequency in running, trotting and hopping in man and other vertebrates. J Physiol 399:81–92

    PubMed  CAS  Google Scholar 

  • Cavagna GA, Willems PA, Franzetti P, Detrembleur C (1991) The two power limits conditioning step frequency in human running. J Physiol 437:95–108

    PubMed  CAS  Google Scholar 

  • Cavagna GA, Heglund NC, Willems PA (2005) Effect of an increase in gravity on the power output and the rebound of the body in human running. J Exp Biol 208(Pt 12):2333–2346. doi:10.1242/jeb.01661

    Article  PubMed  CAS  Google Scholar 

  • Farley CT, Gonzalez O (1996) Leg stiffness and stride frequency in human running. J Biomech 29(2):181–186

    Article  PubMed  CAS  Google Scholar 

  • Farley CT, Morgenroth DC (1999) Leg stiffness primarily depends on ankle stiffness during human hopping. J Biomech 32(3):267–273

    Article  PubMed  CAS  Google Scholar 

  • Farley CT, Glasheen J, McMahon TA (1993) Running springs: speed and animal size. J Exp Biol 185:71–86

    PubMed  CAS  Google Scholar 

  • Ferris DP, Louie M, Farley CT (1998) Running in the real world: adjusting leg stiffness for different surfaces. Proc Biol Sci 265(1400):989–994. doi:10.1098/rspb.1998.0388

    Article  PubMed  CAS  Google Scholar 

  • Ferris DP, Liang K, Farley CT (1999) Runners adjust leg stiffness for their first step on a new running surface. J Biomech 32(8):787–794

    Article  PubMed  CAS  Google Scholar 

  • Genin JJ, Willems PA, Cavagna GA, Lair R, Heglund NC (2010) Biomechanics of locomotion in Asian elephants. J Exp Biol 213(5):694–706. doi:10.1242/jeb.035436

    Article  PubMed  CAS  Google Scholar 

  • He JP, Kram R, McMahon TA (1991) Mechanics of running under simulated low gravity. J Appl Physiol 71(3):863–870

    PubMed  CAS  Google Scholar 

  • Hill AV (1922) The maximum work and mechanical efficiency of human muscles, and their most economical speed. J Physiol 56(1–2):19–41

    PubMed  CAS  Google Scholar 

  • Lee DV, Bertram JEA, Anttonen JT, Ros IG, Harris SL, Biewener AA (2011) A collisional perspective on quadrupedal gait dynamics. J R Soc Interface. doi:10.1098/rsif.2011.0019

  • Linthorne NP (2000) Energy loss in the pole vault take-off and the advantage of the flexible pole. Sports Eng 3(4):205–218

    Article  Google Scholar 

  • McGowan CP, Grabowski AM, McDermott WJ, Herr HM, Kram R (2012) Leg stiffness of sprinters using running-specific prostheses. J R Soc Interface. doi:10.1098/rsif.2011.0877

  • McMahon TA, Cheng GC (1990) The mechanics of running: how does stiffness couple with speed? J Biomech 23(Suppl 1):65–78

    Article  PubMed  Google Scholar 

  • McMahon TA, Valiant G, Frederick EC (1987) Groucho running. J Appl Physiol 62(6):2326–2337

    PubMed  CAS  Google Scholar 

  • Morin JB, Dalleau G, Kyrolainen H, Jeannin T, Belli A (2005) A simple method for measuring stiffness during running. J Appl Biomech 21(2):167–180

    PubMed  Google Scholar 

  • Roberts TJ, Marsh RL, Weyand PG, Taylor CR (1997) Muscular force in running turkeys: the economy of minimizing work. Science 275(5303):1113–1115

    Article  PubMed  CAS  Google Scholar 

  • Roberts TJ, Kram R, Weyand PG, Taylor CR (1998) Energetics of bipedal running. I: metabolic cost of generating force. J Exp Biol 201(Pt 19):2745–2751

    PubMed  CAS  Google Scholar 

  • Schade F, Arampatzis A, Bruggemann GP (2006) Reproducibility of energy parameters in the pole vault. J Biomech 39(8):1464–1471. doi:10.1016/j.jbiomech.2005.03.027

    Article  PubMed  Google Scholar 

  • Schepens B, Willems PA, Cavagna GA (1998) The mechanics of running in children. J Physiol 509(Pt 3):927–940

    Article  PubMed  CAS  Google Scholar 

  • Sparrow WA, Shinkfield AJ, Chow S, Begg RK (1996) Characteristics of gait in stepping over obstacles. Hum Mov Sci 15(4):605–622

    Article  Google Scholar 

  • Willems PA, Cavagna GA, Heglund NC (1995) External, internal and total work in human locomotion. J Exp Biol 198(Pt 2):379–393

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Université catholique de Louvain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Willems.

Additional information

Communicated by Jean-René Lacour.

Electronic supplementary material

Below is the link to the electronic Supplementary materials.

Supplementary material 1 (DOC 147 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mauroy, G., Schepens, B. & Willems, P.A. The mechanics of running while approaching and jumping over an obstacle. Eur J Appl Physiol 113, 1043–1057 (2013). https://doi.org/10.1007/s00421-012-2519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2519-1

Keywords

Navigation