Skip to main content

Exercise-induced endocannabinoid signaling is modulated by intensity

Abstract

Endocannabinoids (eCB) are endogenous ligands for cannabinoid receptors that are densely expressed in brain networks responsible for reward. Recent work shows that exercise activates the eCB system in humans and other mammals, suggesting eCBs are partly responsible for the reported improvements in mood and affect following aerobic exercise in humans. However, exercise-induced psychological changes reported by runners are known to be dependent on exercise intensity, suggesting that any underlying molecular mechanism should also change with varying levels of exercise intensity. Here, we examine circulating levels of eCBs following aerobic exercise (treadmill running) in recreationally fit human runners at four different intensities. We show that eCB signaling is indeed intensity dependent, with significant changes in circulating eCBs observed following moderate intensities only (very high and very low intensity exercises do not significantly alter circulating eCB levels). Our results are consistent with intensity-dependent psychological state changes with exercise and therefore support the hypothesis that eCB activity is related to neurobiological effects of exercise. Thus, future studies examining the role of exercise-induced eCB signaling on neurobiology or physiology must take exercise intensity into account.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE, Brenner GJ, Rubino T, Michalski CW, Marsicano G, Monory K, Mackie K, Marian C, Batkai S, Parolaro D, Fischer MJ, Reeh P, Kunos G, Kress M, Lutz B, Woolf CJ, Kuner R (2007) Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci 10:870–879

    PubMed  Article  CAS  Google Scholar 

  • Aguado T, Monory K, Palzuelos J, Stella N, Cravatt B, Lutz B, Marsicano G, Kokaia Z, Guzman M, Galve-Roperh I (2005) The endocannabinoid system drives neural progenitor proliferation. FASEB Journal 19:1704–1706

    PubMed  CAS  Google Scholar 

  • Aguado T, Palzuelos J, Monory K, Stella N, Cravatt B, Lutz B, Marsicano G, Kokaia Z, Guzman M, Galve-Roperh I (2006) The endocannabinoid system promotes astroglial differentiation by acting on neural progenitor cells. J Neurosci 26:1551–1561

    PubMed  Article  CAS  Google Scholar 

  • Berger BG, Motl RW (2000) Exercise and mood: a selective review and synthesis of research employing the profile of mood states. J Appl Psychol 12:69–92

    Google Scholar 

  • Bramble DM, Lieberman DE (2004) Endurance running and the evolution of Homo. Nature 432:345–352

    PubMed  Article  CAS  Google Scholar 

  • Carrier DR (1984) The energetic paradox of human running and hominid evolution. Curr Anthropol 25:483–495

    Article  Google Scholar 

  • Dietrich A, McDaniel WF (2004) Endocannabinoids and exercise. Br J Sports Med 38:536–541

    PubMed  Article  CAS  Google Scholar 

  • Dubreucq S, Koehl M, Abrous DN, Marsicano G, Chaouloff F (2010) CB1 receptor deficiency decreases wheel-running activity: consequences on emotional behaviours and hippocampal neurogenesis. Exp Neurol 224:106–113

    PubMed  Article  CAS  Google Scholar 

  • Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, PB D, Woods JA, McAuley E, Kramer AF (2011) Exercise training increases size of hippocampus and improves memory. Proc Nat Acad Sci USA 108:3017–3022

    PubMed  Article  CAS  Google Scholar 

  • Feuerecker M, Hauer D, Toth R, Demetz F, Holzl J et al (2012) Effects of exercise stress on the endocannabinoid system in humans under field conditions. Eur J Appl Physiol 112:2777–2781

    PubMed  Article  CAS  Google Scholar 

  • Fu J, Bottegoni G, Sasso O, Bertorelli R, Rocchia W, Masetti M, Guijarro A, Lodola A, Armirotti A, Garau G, Banderiera T, Reggiani A, Mor M, Cavalli A, Piomelli D (2012) A catalytically silent FAAH-1 variant drives anandamide transport in neurons. Nat Neurosci 15:64–69

    Article  CAS  Google Scholar 

  • Gerdeman GL (2008) Endocannabinoids at the synapse - retrograde signaling and presynaptic plasiticity in the brain. In: Kofalvi A (ed) Cannabinoids and the Brain. Springer-Verlag, New York, pp 203–236

    Chapter  Google Scholar 

  • Glaser ST, Gatley SJ, Gifford AN (2006) Ex vivo imaging of fatty acid amide hydrolase activity and its inhibition in the mouse brain. J Pharmacol Exp Ther 316:1088–1097

    PubMed  Article  CAS  Google Scholar 

  • Glass M, Dragunow M, Faull RLM (1997) Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 10:1665–1669

    Google Scholar 

  • Hardison A, Weintraub ST, Giuffrida A (2006) Quantification of endocannabinoids in rat biological samples by GC/MS: technical and theoretical considerations. Prostaglandins Other Lipid Mediat 81:106–112

    PubMed  Article  CAS  Google Scholar 

  • Heyman E, Gamelin FX, Goekint M, Piscitelli F, Roelands B, Leclair E, Di Marzo V, Meeusen R (2012) Intense exercise increases circulating endocannabinoid and BDNF levels in humans: possible implications for reward and depression. Psychoneuroendocrinology 37:844–851

    PubMed  Article  CAS  Google Scholar 

  • Hill MN, Titterness AK, Morrish AC, Carrier EJ, Lee TTY, Gil-Mohapel J, Gorzalka BB, Hillard CJ, Christie BR (2010) Endogenous cannabinoid signaling is required for voluntary exercise-induced enhancement of progenitor cell proliferation in the hippocampus. Hippocampus 20:513–523

    PubMed  CAS  Google Scholar 

  • Hillard CJ (2000) Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol. Prostaglandins Other Lipid Mediat 61:3–18

    PubMed  Article  CAS  Google Scholar 

  • Hoffman MD, Shepanski MA, Ruble SB, Valic Z, Buckwalter JB, Clifford PS (2004) Intensity and duration threshold for aerobic exercise-induced analgesia to pressure pain. Arch Phys Med Rehabil 85:1183–1187

    PubMed  Article  Google Scholar 

  • Hohmann AG, Suplita RL (2006) Endocannabinoid mechanisms of pain modulation. AAPS J 8:E693–E708

    PubMed  Article  CAS  Google Scholar 

  • Hohmann AG, Tsou K, Walker JM (1999) Cannabinoid suppression of noxious heat-evoked activity in wide dynamic range neurons in the lumbar dorsal horn of the rat. J Neurophysiol 81:575–583

    PubMed  CAS  Google Scholar 

  • Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, Krey JF, Walker JM, Holmes PV, Crystal JD, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2005) An endocannabinoid mechanism for stress-reduced analgesia. Nature 435:1108–1112

    PubMed  Article  CAS  Google Scholar 

  • Howlett AC, Breivogel CS, Childer SR, Deadwyler SA, Hampson RE, Porrino LJ (2004) Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. Journal of Clinical Investigation 115:3104–3116

    Google Scholar 

  • Ibrahim MM, Deng H, Zvonok A, Cockayne DA, Kwan J, Mata HP, Vanderha TW, Lai J, Porreca F, Makriyannis A, Malan TP (2003) Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition not present in CNS. Proc Nat Acad Sci USA 100:10529–10533

    PubMed  Article  CAS  Google Scholar 

  • Justinova Z, Solinas M, Tanda G, Redhi GH, Goldberg SR (2005) The endogenous cannabinoid anandamide and its synthetic analog R(+)-methanandamide are intravenously self-administered by squirrel monkeys. J Neurosci 25:5645–5650

    PubMed  Article  CAS  Google Scholar 

  • Justinova Z, Yasar S, Redhi GH, Goldberg SR (2011) The endogenous cannabinoid 2-arachidonoylglycerol is intravenously self-administered by squirrel monkeys. J Neurosci 31:7043–7048

    PubMed  Article  CAS  Google Scholar 

  • Katona I, Freund TF (2008) Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 14:923–930

    PubMed  Article  CAS  Google Scholar 

  • Keeney BK, Raichlen DA, Meek TH, Wijeratne RS, Middleton KM, Gerdeman GL, Garland TJ (2008) Differential response to a selective cannabinoid receptor antagonist (SR141716: rimonabant) in female mice from lines selectively bred for high voluntary wheel-running behavior. Behav Pharmacol 19:812–820

    PubMed  Article  CAS  Google Scholar 

  • Keeney BK, Meek TH, Middleton KM, Holness LF, Garland T Jr (2012) Sex differences in cannabinoid receptor-1 (CB1) pharmacology in mice selectively bred for high voluntary wheel-running behavior. Pharmacol Biochem Behav 101:528–537

    PubMed  Article  CAS  Google Scholar 

  • Kim YP, Kim HB, Jang MH, Lim BV, Kim Y, Kim H, Kim SS, Kim EH, Kim CJ (2003) Magnitude- and time-dependence of the effect of treadmill exercise on cell proliferation in the dentate gyrus of rats. Int J Sports Med 24:114–117

    PubMed  Article  Google Scholar 

  • Kirkcaldy BD, Shephard RJ (1990) Therapeutic implications of exercise. International Journal of Sport Psychology 21:165–184

    Google Scholar 

  • Koltyn KF (2002) Exercise-induced hypoalgesia and intensity of exercise. Sports Med 32:477–487

    PubMed  Article  Google Scholar 

  • Lieberman DE, Raichlen DA, Pontzer H, Bramble DM, C-S E (2006) The human gluteus maximus and its role in running. J Exp Biol 209:2143–2155

    PubMed  Article  Google Scholar 

  • Lieberman DE, Bramble DM, Raichlen DA, Shea JJ (2007) The evolution of endurance running and the tyranny of ethnography: a reply to Pickering and Bunn (2007). J Hum Evol 53:439–442

    PubMed  Article  Google Scholar 

  • Lieberman DE, Bramble DM, Raichlen DA, Shea JJ (2009) Brains, brawn, and the evolution of human endurance running capabilities. In: Grine F, Leakey REF (eds) The origin of homo. Plenum Press, New York, pp 77–92

    Google Scholar 

  • Lou S, Liu J, Chang H, Chen P (2008) Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats. Brain Res 1210:48–55

    PubMed  Article  CAS  Google Scholar 

  • Meng ID, Manning BH, Martin WJ, Fields HL (1998) An analgesia circuit activated by cannabinoids. Nature 395:381–383

    PubMed  Article  CAS  Google Scholar 

  • Ogles BM, Masters KS (2003) A typology of marathon runners based on cluster analysis of motivations. J Sports Behav 26:69–85

    Google Scholar 

  • Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Nuerosci 4:873–884

    Article  CAS  Google Scholar 

  • Raichlen DA, Foster AD, Gerdeman GL, Seillier A, Giuffrida A (2012) Wired to run: exercise-induced endocannabinoid signaling in humans and cursorial mammals and the evolution of the runner’s high. J Exp Biol 215:1331–1336

    PubMed  Article  CAS  Google Scholar 

  • Rasmussen EB, Hillman C (2011) Naloxene and rimonabant reduce the reinforcing properties of exercise in rats. Exp Clin Psychopharmacol 19:389–400

    PubMed  Article  CAS  Google Scholar 

  • Reed J, Ones DS (2006) The effect of acute aerobic exercise on positive activated affect: a meta-analysis. Psychol Sport Exerc 7:477–514

    Article  Google Scholar 

  • Richardson JD (2000) Cannabinoids modulate pain by multiple mechanisms of action. J Pain 1:2–14

    Google Scholar 

  • Sachs M, Pargman D (1979) Running addiction: a depth view. J Sports Behav 2:143–155

    Google Scholar 

  • Solinas M, Justinova Z, Goldberg SR, Tanda T (2006) Anandamide administration alone and after inhibition of fatty acid amide hydrolase (FAAH) increases dopamine levels in the nucleus accumbens shell in rats. J Neurochem 98:408–419

    PubMed  Article  CAS  Google Scholar 

  • Sparling PB, Giuffrida A, Piomelli D, Rosskopf L, Dietrich A (2003) Exercise activates the endocannabinoid system. Neuro Report 14:2209–2211

    CAS  Google Scholar 

  • Tanaka H, Monahan KD, Seals DR (2001) Age-predicted maximal heart rate revisited. J Am Coll Cardiol 37:153–156

    PubMed  Article  CAS  Google Scholar 

  • Vaughn LK, Denning G, Stuhr KL, Wit H, Hill MN, Hillard CJ (2010) Endocannabinoid signalling: has it got rhythm? Br J Pharmacol 160:530–543

    PubMed  Article  CAS  Google Scholar 

  • Willoughby KA, Moore SF, Martin BR, Ellis EF (1997) The biodisposition and metabolism of anandamide in mice. J Pharmacol Exp Ther 282:243–247

    PubMed  CAS  Google Scholar 

  • Wolf SA, Bick-Sander A, Fabel K, Leal-Galicia P, Tauber S, Ramirez-Rodriguez G, Muller A, Melnik A, Waltinger TP, Ulrich O, Kempermann G (2010) Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis. Cell Commun Signal 8:12

    PubMed  Article  Google Scholar 

  • Zoerner AA, Gutzki FM, Suchy MT, Beckmann B, Engeli S, Jordan J, Tsikas D (2009) Targeted stable-isotope dilution GC–MS/MS analysis of the endocannabinoid anandamide and other fatty acid ethanol amides in human plasma. J Chromatogr B Biomed Appl 877:2909–2923

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The staff of the Clinical and Translational Science Research Center at the University of Arizona assisted with data collection. This project was supported by NSF BCS 0820270 and a Wenner Gren Foundation Hunt Post-Doctoral Fellowship to D.A.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Raichlen.

Additional information

Communicated by Fausto Baldissera.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Raichlen, D.A., Foster, A.D., Seillier, A. et al. Exercise-induced endocannabinoid signaling is modulated by intensity. Eur J Appl Physiol 113, 869–875 (2013). https://doi.org/10.1007/s00421-012-2495-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2495-5

Keywords

  • AEA
  • 2-AG
  • Positive affect
  • Endurance running
  • Neurogenesis
  • Analgesia