Skip to main content
Log in

Free-running circadian rhythms of muscle strength, reaction time, and body temperature in totally blind people

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Light is the major synchronizer of circadian rhythms. In the absence of light, as for totally blind people, some variables, such as body temperature, have an endogenous period that is longer than 24 h and tend to be free running. However, the circadian rhythm of muscle strength and reaction time in totally blind people has not been defined in the literature. The objective of this study was to determine the period of the endogenous circadian rhythm of the isometric and isokinetic contraction strength and simple reaction time of totally blind people. The study included six totally blind people with free-running circadian rhythms and four sighted people (control group). Although the control group required only a single session to determine the circadian rhythm, the blind people required three sessions to determine the endogenous period. In each session, isometric strength, isokinetic strength, reaction time, and body temperature were collected six different times a day with an interval of at least 8 h. The control group had better performance for strength and reaction time in the afternoon. For the blind, this performance became delayed throughout the day. Therefore, we conclude that the circadian rhythms of strength and simple reaction time of totally blind people are within their free-running periods. For some professionals, like the blind paralympic athletes, activities that require large physiological capacities in which the maximum stimulus should match the ideal time of competition may result in the blind athletes falling short of their expected performance under this free-running condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashkenazi IE, Reinberg A, Bicakova-Rocher A, Ticher A (1993) The genetic background of individual variations of circadian-rhythm periods in healthy human adults. Am J Human Genet 52(6):1250–1259

    CAS  Google Scholar 

  • Atkinson G, Reilly T (1996) Circadian variation in sports performance. Sports Med 21(4):292–312

    Article  PubMed  CAS  Google Scholar 

  • Benedito-Silva AA (1997) Aspectos metodológicos de la cronobiologia. In: Marques N, Menna-Barreto L, Golombek D (eds) Cronobiologia: Princípios y Aplicaciones. Eudeba, Buenos Aires, pp 239–262

    Google Scholar 

  • Blatter K, Cajochen C (2007) Circadian rhythms in cognitive performance: methodological constraints, protocols, theoretical underpinnings. Physiol Behav 90(2–3):196–208

    Article  PubMed  CAS  Google Scholar 

  • Blatter K, Graw P, Munch M, Knoblauch V, Wirz-Justice A, Cajochen C (2006) Gender and age differences in psychomotor vigilance performance under differential sleep pressure conditions. Behav Brain Res 168(2):312–317

    Article  PubMed  Google Scholar 

  • Coldwells A, Atkinson G, Reilly T (1994) Sources of variation in back and leg dynamometry. Ergonomics 37(1):79–86

    Article  PubMed  CAS  Google Scholar 

  • Dinges DF, Powell JW (1985) Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav Res Methods Inst Comp 17:652–655

    Article  Google Scholar 

  • Drouin JM, Valovich-mcLeod TC, Shultz SJ, Gansneder BM, Perrin DH (2004) Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur J Appl Physiol 91(1):22–29

    Article  PubMed  Google Scholar 

  • Drummond SPA, Bischoff-Grethe A, Dinges DF, Ayalon L, Mednick SC, Meloy MJ (2005) The neural basis of the psychomotor vigilance task. Sleep 28(9):1059–1068

    PubMed  Google Scholar 

  • Giacomoni M, Edwards B, Bambaeichi E (2005) Gender differences in the circadian variations in muscle strength assessed with and without superimposed electrical twitches. Ergonomics 48(11–14):1473–1487

    Article  PubMed  Google Scholar 

  • Graw P, Krauchi K, Knoblauch V, Wirz-Justice A, Cajochen C (2004) Circadian and wake-dependent modulation of fastest and slowest reaction times during the psychomotor vigilance task. Physiol Behav 80(5):695–701

    Article  PubMed  CAS  Google Scholar 

  • Greenes DS, Fleisher GR (2001) Accuracy of a noninvasive temporal artery thermometer for use in infants. Arch Pediatr Adolesc Med 155(3):376–381

    PubMed  CAS  Google Scholar 

  • Hakkinen K, Kraemer WJ, Newton RU, Alen M (2001) Changes in electromyographic activity, muscle fibre and force production characteristics during heavy resistance/power strength training in middle-aged and older men and women. Acta Physiol Scand 171(1):51–62

    PubMed  CAS  Google Scholar 

  • Harkness JA, Richter MB, Panayi GS, Van de Pette K, Unger A, Pownall R, Geddawi M (1982) Circadian variation in disease activity in rheumatoid arthritis. Br Med J 284(6315):551–555

    Article  CAS  Google Scholar 

  • Horvat M, Ray C, Nocera J, Croce R (2006) Comparison of isokinetic peak force and power in adults with partial and total blindness. Percept Mot Skills 103(1):231–237

    Article  PubMed  Google Scholar 

  • Lewy AJ, Emens J, Sack RL, Hasler BP, Bernert RA (2003) Zeitgeber hierarchy in humans: resetting the circadian phase positions of blind people using melatonin. Chronobiol Int 20(5):837–852

    Article  PubMed  CAS  Google Scholar 

  • Lewy AJ, Newsome DA (1983) Different types of melatonin circadian secretory rhythms in some blind subjects. J Clin Endocrinol Metab 56(6):1103–1107

    Article  PubMed  CAS  Google Scholar 

  • Lockley SW, Dijk DJ, Kosti O, Skene DJ, Arendt J (2008) Alertness, mood and performance rhythm disturbances associated with circadian sleep disorders in the blind. J Sleep Res 17(2):207–216

    Article  PubMed  Google Scholar 

  • Lockley SW, Skene DJ, James K, Thapan K, Wright J, Arendt J (2000) Melatonin administration can entrain the free-running circadian system of blind subjects. J Endocrinol 164(1):R1–R6

    Article  PubMed  CAS  Google Scholar 

  • Lockley SW, Skene DJ, Tabandeh H, Bird AC, Defrance R, Arendt J (1997) Relationship between napping and melatonin in the blind. J Biol Rhythms 12(1):16–25

    Article  PubMed  CAS  Google Scholar 

  • Loh S, Lamond N, Dorrian J, Roach G, Dawson D (2004) The validity of psychomotor vigilance tasks of less than 10-minute duration. Behav Res Methods Instrum Comput 36(2):339–346

    Article  PubMed  Google Scholar 

  • Mathiowetz V, Weber K, Volland G, Kashman N (1984) Reliability and validity of grip and pinch strength evaluations. J Hand Surg 9(2):222–226

    CAS  Google Scholar 

  • Meijer JH, Schwartz WJ (2003) In search of the pathways for light-induced pacemaker ressetting in the suprachiasmatic nucleus. J Biol Rhythms 18(3):235–249

    Article  PubMed  Google Scholar 

  • Miles LEM, Raynal DM, Wilson MA (1977) Blind man living in normal society has circadian rhythms of 24.9 hours. Science 198(4315):421–423

    Google Scholar 

  • Moore RY, Speh JC, Leak RK (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309(1):89–98

    Article  PubMed  CAS  Google Scholar 

  • Moore RY (1997) Circadian rhythm: basic neurobiology and clinical applications. Annu Rev Med 48:253–266

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa H, Sack RL, Lewy AJ (1992) Sleep propensity free-runs with the temperature, melatonin and cortisol rhythms in a totally blind person. Sleep 15(4):330–336

    PubMed  CAS  Google Scholar 

  • Nelson W, Tong YL, Lee JK, Halberg F (1979) Methods for cosinor-rhythmometry. Chronobiologia 6(4):305–323

    PubMed  CAS  Google Scholar 

  • Peirson S, Foster RG (2006) Melanopsin: another way of signaling light. Neuron 49(3):331–339

    Article  PubMed  CAS  Google Scholar 

  • Reilly T, Atkinson G, Waterhouse J (2000) Chronobiology and physical performance. In: Garret WE, Kirkendall DT (eds) Exercise and sport science. Lippincott Williams & Wilkins, Philadelphia, pp 351–372

    Google Scholar 

  • Reilly T, Atkinson G, Waterhouse J (1997) Circadian rhythms in sports performance. In: Reilly T, Atkinson G, Waterhouse J (eds) Biological rhythms and exercise. Oxford University Press, USA, pp 38–61

    Google Scholar 

  • Reilly T, Waterhouse J (2009) Sports performance: is there evidence that the body clock plays a role? Eur J Appl Physiol 106(3):321–332

    Article  PubMed  Google Scholar 

  • Reinberg A, Bicakova-Rocher A, Mechkouri M, Ashkenazi I (2002) Right- and left-brain hemisphere. Rhythm in reaction time to light signals is task-load-dependent: age, gender, and handgrip strength rhythm comparisons. Chronobiol Int 19(6):1087–1106

    Article  PubMed  Google Scholar 

  • Reinberg AE, Bicakova-Rocher A, Gorceix A, Ashkenazi IE, Smolensky MH (1994) Placebo effect on the circadian rhythm period tau of temperature and hand-grip strength rhythms: interindividual and gender-related difference. Chronobiol Int 11(1):45–53

    Article  PubMed  CAS  Google Scholar 

  • Sack RL, Lewy AJ, Blood ML, Keith LD, Nakagawa H (1992) Circadian rhythm abnormalities in totally blind people: incidence and clinical significance. J Clin Endocrinol Metab 75(1):127–134

    Article  PubMed  CAS  Google Scholar 

  • Sack RL, Lewy AJ (2001) Circadian rhythm sleep disorders: lessons from the blind. Sleep Med Rev 5(3):189–206

    Article  PubMed  Google Scholar 

  • Skene DJ, Lockley SW, James K, Arendt J (1999) Correlation between urinary cortisol and 6-sulphatoxymelatonin rhythms in field studies of blind subjects. Clin Endocrinol 50(6):715–719

    Article  CAS  Google Scholar 

  • Touitou Y, Smolensky MH, Portaluppi F (2006) Ethics, standards, and procedures of animal and human chronobiology research. Chronobiol Int 23(6):1083–1096

    Article  PubMed  Google Scholar 

  • Uusi-Rasi K, Sievanen H, Rinne M, Oja P, Vuori I (2001) Bone mineral density of visually handicapped women. Clin Physiol 21(4):498–503

    Article  PubMed  CAS  Google Scholar 

  • Van Dongen HP, Dinges DF (2005) Sleep, circadian rhythms, and psychomotor vigilance. Clin Sports Med 24(2):237–249

    Article  PubMed  Google Scholar 

  • Waterhouse J, Drust B, Weinert D, Edwards B, Gregson W, Atkinson G, Kao S, Aizawa S, Reilly T (2005) The circadian rhythm of body temperature: origin and some implications for exercise performance. Chronobiol Int 22(2):207–225

    Article  PubMed  Google Scholar 

  • World Medical Association (2011) Declaration of Helsinki—ethical principles for medical research involving human subjects. http://www.wma.net/en/30publications/10policies/b3/17c.pdf. Accessed 27 May 2011

  • Wright KP Jr, Hull JT, Czeisler CA (2002) Relationship between alertness, performance, and body temperature in humans. Am J Physiol Regul Integr Comp Physiol 283(6):R1370–R1377

    PubMed  CAS  Google Scholar 

  • Wyse JP, Mercer TH, Gleeson NP (1994) Time-of-day dependence of isokinetic leg strength and associated interday variability. Br J Sports Med 28(3):167–170

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Centro de Estudos em Psicobiologia e Exercício (CEPE). The study was awarded a grant from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-CEPID 98/143033-ST and 04/11913-8 CFRS), the Associação Fundo de Incentivo à Pesquisa (AFIP) and the Centro de Estudo Multidisciplinar em Sonolência e Acidentes (CEMSA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Camila Fabiana Rossi Squarcini, Andrea Maculano Esteves or Marco Túlio de Mello.

Additional information

Communicated by Alain Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Squarcini, C.F.R., Pires, M.L.N., Lopes, C. et al. Free-running circadian rhythms of muscle strength, reaction time, and body temperature in totally blind people. Eur J Appl Physiol 113, 157–165 (2013). https://doi.org/10.1007/s00421-012-2415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2415-8

Keywords

Navigation