Skip to main content
Log in

Blood lactate concentration at the maximal lactate steady state is not dependent on endurance capacity in healthy recreationally trained individuals

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of the study was to investigate the independent relationship between maximal lactate steady state (MLSS), blood lactate concentration [La] and exercise performance as reported frequently. Sixty-two subjects with a wide range of endurance performance (MLSS power output 199 ± 55 W; range: 100–302 W) were tested on an electronically braked cycle ergometer. One-min incremental exercise tests were conducted to determine maximal variables as well as the respiratory compensation point (RCP) and the second lactate turn point (LTP2). Several continuous exercise tests were performed to determine the MLSS. Subjects were divided into three clusters of exercise performance. Dietary control was employed throughout all testing. No significant correlation was found between MLSS [La] and power output at MLSS. Additionally, the three clusters of subjects with different endurance performance levels based on power output at MLSS showed no significant difference for MLSS [La]. MLSS [La] was not significantly different between men and women (average of 4.80 ± 1.50 vs. 5.22 ± 1.52 mmol l−1). MLSS [La] was significantly related to [La] at RCP, LTP2 and at maximal power. The results of this study support previous findings that MLSS [La] is independent of endurance performance. Additionally, MLSS [La] was not influenced by sex. Correlations found between MLSS [La] and [La] at maximal power and at designated anaerobic thresholds indicate only an association of [La] response during incremental and MLSS exercise when utilizing cycle ergometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almarwaey OA, Jones AM, Tolfrey K (2004) Maximal lactate steady state in trained adolescent runners. J Sports Sci 22(2):215–225

    Article  PubMed  Google Scholar 

  • Aunola S, Rusko H (1992) Does anaerobic threshold correlate with maximal lactate steady state? J Sports Sci 10(4):309–329

    Article  PubMed  CAS  Google Scholar 

  • Bacon L, Kern M (1999) Evaluating a test protocol for predicting maximum lactate steady state. J Sports Med Phys Fitness 39(4):300–308

    PubMed  CAS  Google Scholar 

  • Baron B, Dekerle J, Robin S, Neviere R, Dupont L, Matran R, Vanvelcenaher J, Robin H, Pelayo P (2003) Maximal lactate steady state does not correspond to a complete physiological steady state. Int J Sports Med 24(8):582–587

    Article  PubMed  CAS  Google Scholar 

  • Beneke R (1995) Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med Sci Sports Exerc 27(6):863–867

    PubMed  CAS  Google Scholar 

  • Beneke R, Heck H, Schwarz V, Leithauser R (1996) Maximal lactate steady state during the second decade of age. Med Sci Sports Exerc 28(12):1474–1478

    Article  PubMed  CAS  Google Scholar 

  • Beneke R, von Duvillard SP (1996) Determination of maximal lactate steady state response in selected sports events. Med Sci Sports Exerc 28(2):241–246

    Article  PubMed  CAS  Google Scholar 

  • Beneke R, Hutler M, Leithauser RM (2000) Maximal lactate-steady-state independent of performance. Med Sci Sports Exerc 32(6):1135–1139

    Article  PubMed  CAS  Google Scholar 

  • Beneke R, Leithauser RM, Hutler M (2001) Dependence of the maximal lactate steady state on the motor pattern of exercise. Br J Sports Med 35(3):192–196

    Article  PubMed  CAS  Google Scholar 

  • Beneke R (2003a) Experiment and computer-aided simulation: complementary tools to understand exercise metabolism. Biochem Soc Trans 31:1263–1266

    Article  PubMed  CAS  Google Scholar 

  • Beneke R (2003b) Methodological aspects of maximal lactate steady state-implications for performance testing. Eur J Appl Physiol 89(1):95–99

    Article  PubMed  CAS  Google Scholar 

  • Billat VL, Sirvent P, Py G, Koralsztein JP, Mercier J (2003) The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science. Sports Med 33(6):407–426

    Article  PubMed  Google Scholar 

  • Brooks GA, Mercier J (1994) Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol 76(6):2253–2261

    PubMed  CAS  Google Scholar 

  • Brooks GA (2002) Lactate shuttles in nature. Biochem Soc Trans 30:259–264

    Google Scholar 

  • Burke LM, Angus DJ, Cox GR, Cummings NK, Febbraio MA, Gawthorn K, Hawley JA, Minehan M, Martin DT, Hargreaves (2000) Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling. J Appl Physiol 89(6):2413–2421

  • Dekerle J, Baron B, Dupont L, Vanvelcenaher J, Pelayo P (2003) Maximal lactate steady state, respiratory compensation threshold and critical power. Eur J Appl Physiol 89(3–4):281–288

    Article  PubMed  CAS  Google Scholar 

  • Demarle AP, Slawinski JJ, Laffite LP, Bocquet VG, Koralsztein JP, Billat VL (2001) Decrease of O2 deficit is a potential factor in increased time to exhaustion after specific endurance training. J Appl Physiol 90:947–953

    Article  PubMed  CAS  Google Scholar 

  • Denadai BS, Figuera TR, Favaro OR, Goncalves M (2004) Effect of the aerobic capacity on the validity of the anaerobic threshold for determination of the maximal lactate steady state in cycling. Braz J Med Biol Res 37(10):1551–1556

    Article  PubMed  CAS  Google Scholar 

  • Donovan CM, Pagliassotti MJ (2000) Quantitative assessment of pathways for lactate disposal in skeletal muscle fiber types. Med Sci Sports Exerc 32(4):772–777

    Article  PubMed  CAS  Google Scholar 

  • Forsyth JJ, Reilly T (2005) The combined effect of time of day and menstrual cycle on lactate threshold. Med Sci Sports Exerc 37(12):2046–2053

    Article  PubMed  CAS  Google Scholar 

  • Gladden LB (2000) Muscle as a consumer of lactate. Med Sci Sports Exerc 32(4):764–771

    Article  PubMed  CAS  Google Scholar 

  • Gobatto CA, de Mello MA, Sibuya CY, de Azevedo JR, dos Santos LA, Kokubun E (2001) Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol A Mol Integr Physiol 130(1):21–27

    Article  PubMed  CAS  Google Scholar 

  • Harnish CR, Swensen TC, Pate RR (2001) Methods for estimating the maximal lactate steady state in trained cyclists. Med Sci Sports Exerc 33(6):1052–1055

    Article  PubMed  CAS  Google Scholar 

  • Haverty M, Kenney WL, Hodgson JL (1988) Lactate and gas exchange responses to incremental and steady state running. Br J Sports Med 22(2):51–54

    Article  PubMed  CAS  Google Scholar 

  • Heck H, Mader A, Hess G, Mücke S, Müller R, Hollman W (1985) Justification of the 4.0 mmol/l lactate threshold. Int J Sports Med 6:117–130

    Article  PubMed  CAS  Google Scholar 

  • Hofmann P, Pokan R, von Duvillard SP, Seibert FJ, Zweiker R, Schmid P (1997) Heart rate performance curve during incremental cycle ergometer exercise in healthy young male subjects. Med Sci Sports Exerc 29(6):762–768

    Article  PubMed  CAS  Google Scholar 

  • Hofmann P, Bunc V, Leitner H, Pokan R, Gaisl G (1994) Heart rate threshold related to lactate turn point and steady-state exercise on a cycle ergometer. Eur J Appl Physiol Occup Physiol 69(2):132–139

    Article  PubMed  CAS  Google Scholar 

  • Jeukendrup AE, Moseley L, Mainwaring GI, Samuels S, Perry S, Mann CH (2006) Exogenous carbohydrate oxidation during ultraendurance exercise. J Appl Physiol 100(4):1134–1141

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Doust JH (1998) The validity of the lactate minimum test for determination of the maximal lactate steady state. Med Sci Sports Exerc 30(8):1304–1313

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Carter H (2000) The effect of endurance training on parameters of aerobic fitness. Sports Med 29(6):373–386

    Article  PubMed  CAS  Google Scholar 

  • MacIntosh BR, Esau S, Svedahl K (2002) The lactate minimum test for cycling: estimation of the maximal lactate steady state. Can J Appl Physiol 27(3):232–249

    Article  PubMed  CAS  Google Scholar 

  • Mocellin R, Heusgen M, Korsten-Reck U (1990) Maximal steady state blood lactate levels in 11-year-old boys. Eur J Pediatr 149(11):771–773

    Article  PubMed  CAS  Google Scholar 

  • Mocellin R, Heusgen M, Gildein HP (1991) Anaerobic threshold and maximal steady-state blood lactate in prepubertal boys. Eur J Appl Physiol Occup Physiol 62(1):56–60

    Article  PubMed  CAS  Google Scholar 

  • Myburgh KH, Viljoen A, Tereblanche S (2001) Plasma lactate concentrations for self selected maximal effort lasting 1 h. Med Sci Sports Exerc 33(1):152–156

    PubMed  CAS  Google Scholar 

  • Pagliassotti MJ, Donovan CM (1990) Role of cell type in net lactate removal by skeletal muscle. Am J Physiol 258:E635–E642

    PubMed  CAS  Google Scholar 

  • Pokan R, Hofmann P, von Duvillard SP, Beaufort F, Smekal G, Gasser R, Klein W, Eber B, Bachl N, Schmid P (1998) The heart rate performance curve and left ventricular function during exercise in patients after myocardial infarction. Med Sci Sports Exerc 30(10):1475–1480

    Article  PubMed  CAS  Google Scholar 

  • Pringle JS, Jones AM (2002) Maximal lactate steady state, critical power and EMG during cycling. Eur J Appl Physiol 88(3):214–226

    Article  PubMed  CAS  Google Scholar 

  • Smekal G, Scharl A, von Duvillard SP, Pokan R, Baca A, Baron R, Tschan H, Hofmann P, Bachl N (2002) Accuracy of neuro-fuzzy logic and regression calculations in determining maximal lactate steady-state power output from incremental tests in humans. Eur J Appl Physiol 88(3):264–274

    Article  PubMed  Google Scholar 

  • Smekal G, von Duvillard SP, Frigo P, Tegelhofer T, Pokan R, Hofmann P, Tschan H, Baron R, Wonisch M, Renezeder K, Bachl N (2007) Menstrual cycle: no effect on exercise cardiorespiratory variables or blood lactate concentration. Med Sci Sports Exerc 39(7):1098–1106

    Article  PubMed  CAS  Google Scholar 

  • Smith CG, Jones AM (2001) The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners. Eur J Appl Physiol 85(1–2):19–26

    Article  PubMed  CAS  Google Scholar 

  • Usaj A, Starc V (1996) Blood pH and lactate kinetics in the assessment of running endurance. Int J Sports Med 17(1):34–40

    Article  PubMed  CAS  Google Scholar 

  • Wasserman K (1984) The anaerobic threshold measurement to evaluate exercise performance. Am Rev Respir Dis 129(Suppl):S35–S40

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Miyashita M, Hughson RL, Tamura S, Shinohara M, Mutoh Y (1991) The ventilatory threshold gives maximal lactate steady state. Eur J Appl Physiol Occup Physiol 63(1):55–59

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T (1984) Effect of dietary modifications on lactate threshold and onset of blood lactate accumulation during incremental exercise. Eur J Appl Physiol Occup Physiol 53(3):200–205

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge P. von Duvillard.

Additional information

Communicated by Susan A. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smekal, G., von Duvillard, S.P., Pokan, R. et al. Blood lactate concentration at the maximal lactate steady state is not dependent on endurance capacity in healthy recreationally trained individuals. Eur J Appl Physiol 112, 3079–3086 (2012). https://doi.org/10.1007/s00421-011-2283-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2283-7

Keywords

Navigation