Skip to main content

Effects of exercise stress on the endocannabinoid system in humans under field conditions

Abstract

The effects of physical exercise stress on the endocannabinoid system in humans are almost unexplored. In this prospective study, we investigated in a crossover design and under field conditions at different altitudes the effects of physical exercise on the endocannabinoid system (ECS) in 12 trained healthy volunteers. For determination of alterations on the ECS three different protocols were analyzed: Protocol A (physical exercise at lower altitude) involved strenuous hiking below 2,100 m, whereas Protocol B (physical exercise by active ascent to high altitude) involved hiking up to 3,196 m, an accommodation at the cottage and a descent the next day. Protocol C (passive ascent) included a helicopter ascent to 3,196 m, an overnight stay at this altitude and a flight back to the base camp the following day. The cumulative hiked altitude in Protocol A and B was comparable (~1,650 m). The blood EC concentrations of anandamide increased significantly in Protocol A/B from baseline (T0) 0.12 ± 0.01/0.16 ± 0.02 (mean ± SEM) to 0.27 ± 0.02/0.42 ± 0.02 after exercise (T1) (p < 0.05). Anandamide levels in Protocol C remained stable at 0.20 ± 0.02. We conclude that the ECS is activated upon strenuous exercise whereas the combination with hypoxic stress further increases its activity. The reduced partial pressure of oxygen at high altitude alone did not affect this system. In summary, physical exercise activates the endocannabinoid system, whereas the combination with high altitude enhances this activation. This discloses new perspectives to adaptation mechanisms to physical exercise.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Carrier EJ, Patel S, Hillard CJ (2005) Endocannabinoids in neuroimmunology and stress. Curr Drug Targets CNS Neurol Disord 4:657–665

    PubMed  Article  CAS  Google Scholar 

  2. Chen-Izu Y, Xiao RP, Izu LT, Cheng H, Kuschel M, Spurgeon H, Lakatta EG (2000) G(i)-dependent localization of beta(2)-adrenergic receptor signaling to L-type Ca(2+) channels. Biophys J 79:2547–2556

    PubMed  Article  CAS  Google Scholar 

  3. Choukèr A, Demetz F, Martignoni A, Smith L, Setzer F, Bauer A, Holzl J, Peter K, Christ F, Thiel M (2005) Strenuous physical exercise inhibits granulocyte activation induced by high altitude. J Appl Physiol 98:640–647

    PubMed  Article  Google Scholar 

  4. De Petrocellis L, Di Marzo V (2009) An introduction to the endocannabinoid system: from the early to the latest concepts. Best Pract Res Clin Endocrinol Metab 23:1–15

    PubMed  Article  Google Scholar 

  5. Di Marzo V, Verrijken A, Hakkarainen A, Petrosino S, Mertens I, Lundbom N, Piscitelli F, Westerbacka J, Soro-Paavonen A, Matias I, Van Gaal L, Taskinen MR (2009) Role of insulin as a negative regulator of plasma endocannabinoid levels in obese and nonobese subjects. Eur J Endocrinol 161:715–722

    PubMed  Article  CAS  Google Scholar 

  6. Flinn MV, Nepomnaschy PA, Muehlenbein MP, Ponzi D (2011) Evolutionary functions of early social modulation of hypothalamic-pituitary-adrenal axis development in humans. Neurosci Biobehav Rev 35:1611–1629

    PubMed  Article  CAS  Google Scholar 

  7. Hill MN, McEwen BS (2010) Involvement of the endocannabinoid system in the neurobehavioural effects of stress and glucocorticoids. Prog Neuropsychopharmacol Biol Psychiatry 34:791–797

    PubMed  Article  CAS  Google Scholar 

  8. Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, Krey JF, Walker JM, Holmes PV, Crystal JD, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435:1108–1112

    PubMed  Article  CAS  Google Scholar 

  9. Mackie K (2006) Mechanisms of CB1 receptor signaling: endocannabinoid modulation of synaptic strength. Int J Obes (Lond) 30(Suppl 1):S19–S23

    Article  CAS  Google Scholar 

  10. Mackie K (2008) Cannabinoid receptors: where they are and what they do. J Neuroendocrinol 20(Suppl 1):10–14

    PubMed  Article  CAS  Google Scholar 

  11. Movahed P, Evilevitch V, Andersson TL, Jonsson BA, Wollmer P, Zygmunt PM, Hogestatt ED (2005) Vascular effects of anandamide and N-acylvanillylamines in the human forearm and skin microcirculation. Br J Pharmacol 146:171–179

    PubMed  Article  CAS  Google Scholar 

  12. Schmidt A, Brune K, Hinz B (2006) Determination of the endocannabinoid anandamide in human plasma by high-performance liquid chromatography. Biomed Chromatogr 20:336–342

    PubMed  Article  CAS  Google Scholar 

  13. Sparling PB, Giuffrida A, Piomelli D, Rosskopf L, Dietrich A (2003) Exercise activates the endocannabinoid system. Neuroreport 14:2209–2211

    PubMed  Article  CAS  Google Scholar 

  14. Steiner MA, Wotjak CT (2008) Role of the endocannabinoid system in regulation of the hypothalamic-pituitary-adrenocortical axis. Prog Brain Res 170:397–432

    PubMed  Article  CAS  Google Scholar 

  15. Sugiura T, Kishimoto S, Oka S, Gokoh M (2006) Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res 45:405–446

    PubMed  Article  CAS  Google Scholar 

  16. Tasker J (2004) Endogenous cannabinoids take the edge off neuroendocrine responses to stress. Endocrinology 145:5429–5430

    PubMed  Article  CAS  Google Scholar 

  17. Vogeser M, Schelling G (2007) Pitfalls in measuring the endocannabinoid 2-arachidonoyl glycerol in biological samples. Clin Chem Lab Med 45:1023–1025

    PubMed  Article  CAS  Google Scholar 

  18. Vogeser M, Hauer D, Christina Azad S, Huber E, Storr M, Schelling G (2006) Release of anandamide from blood cells. Clin Chem Lab Med 44:488–491

    PubMed  Article  CAS  Google Scholar 

  19. Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A (2008) Catecholamines and the effects of exercise, training and gender. Sports Med 38:401–423

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors thank the volunteers of the South Tyrolean Mountain Rescue Service who generously spent their time and participated with enthusiasm. We also thank Dr. G. Andergassen, Dr. G. Rammlmair, Prof. F. Christ, Dr. S. Kofler, Dr. M. Choukèr, M. Hoelzl, O. Zorzi, Dr. C. Moser, Dr. M. Niklas, Dr. J. Abicht, S. Schröpfer and Prof. Dr. M. Vogeser for continuous help during the study. This field study was supported by a research grant from the South Tyrolean Department of Health and by Siemens Medical Solutions, Munich, Germany, the Department of Anaesthesiology, and Department of Intensive Care Medicine of Brixen (Italy) and Munich (Germany), respectively.

Conflict of interest

The authors have no conflicts of interest or financial ties to disclose.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Choukèr.

Additional information

Communicated by Susan A. Ward.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feuerecker, M., Hauer, D., Toth, R. et al. Effects of exercise stress on the endocannabinoid system in humans under field conditions. Eur J Appl Physiol 112, 2777–2781 (2012). https://doi.org/10.1007/s00421-011-2237-0

Download citation

Keywords

  • Endocannabinoids
  • Anandamide
  • 2-AG
  • Exercise
  • Sport