Substrate utilization during brisk walking is affected by glycemic index and fructose content of a pre-exercise meal

Abstract

The purpose of the present study was to investigate whether both glycemic index (GI) and fructose content of a pre-exercise meal would affect substrate utilization during subsequent brisk walking. Ten healthy young males completed 60 min of 46% \( \dot{V}{\text{O}}_{{2\max }} \) brisk walking 2 h after they consumed one of three breakfasts: a low-GI meal without fructose (LGI), a low-GI meal including fructose (LGIF), and a high-GI meal without fructose (HGI). The calculated GI values for the three meals were 41, 39, and 72, respectively. Substrate utilization was measured using indirect respiratory calorimetry method. During the postprandial period, the incremental area under the blood response curve values of glucose and insulin were higher in the HGI trial, compared with those in the LGI and LGIF trials (HGI vs. LGI and LGIF: Glucose 223.6 ± 19.1 vs. 70.2 ± 7.4 and 114.1 ± 16.4 mmol min L−1; Insulin 4257 ± 932 vs. 920 ± 319 and 1487 ± 348 mU min L−1). During exercise, substrate preference was distinct based on different pre-exercise carbohydrate meals. Higher fat and lower carbohydrate oxidation was observed in the LGI trial, whereas both the HGI and LGIF trials were characterized by higher carbohydrate and lower fat oxidation (LGI vs. LGIF and HGI: Carbohydrate 59.3 ± 2.4 vs. 69.8 ± 3.9 and 72.7 ± 3.9 g; Fat 22.7 ± 2.0 vs. 18.5 ± 1.7 and 17.6 ± 1.3 g; P < 0.05). In conclusion, the presence of fructose in a LGI breakfast resulted in similar substrate utilization during subsequent brisk walking with that induced by a HGI breakfast. It appears that both the GI and fructose content in a breakfast individually affect substrate utilization during subsequent moderate intensity exercise.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abdel-Sayed A, Binnert C, Lê KA, Bortolotti M, Schneiter P, Tappy L (2008) A high-fructose diet impairs basal and stress-mediated lipid metabolism in healthy male subjects. Br J Nutr 100(02):393–399. doi:10.1017/S000711450789547X

    PubMed  Article  CAS  Google Scholar 

  2. Achten J, Jeukendrup AE (2003) Maximal fat oxidation during exercise in trained men. Int J Sports Med 24(8):603–608. doi:10.1055/s-2003-43265

    PubMed  Article  CAS  Google Scholar 

  3. Achten J, Jeukendrup AE (2004) Optimizing fat oxidation through exercise and diet. Nutrition 20(7–8):716–727. doi:10.1016/j.nut.2004.04.005

    PubMed  Article  CAS  Google Scholar 

  4. Ahlborg G, Bjorkman O (1990) Splanchnic and muscle fructose metabolism during and after exercise. J Appl Physiol 69(4):1244–1251

    PubMed  CAS  Google Scholar 

  5. Atkinson FS, Foster-Powell K, Brand-Miller JC (2008) International tables of glycemic index and glycemic load values: 2008. Diabetes Care 31(12):2281–2283. doi:10.2337/dc08-1239

    PubMed  Article  Google Scholar 

  6. Backhouse SH, Williams C, Stevenson E, Nute M (2007) Effects of the glycemic index of breakfast on metabolic responses to brisk walking in females. Eur J Clin Nutr 61(5):590–596. doi:10.1038/sj.ejcn.1602566

    PubMed  CAS  Google Scholar 

  7. Bennard P, Doucet É (2006) Acute effects of exercise timing and breakfast meal glycemic index on exercise-induced fat oxidation. Appl Physiol Nutr Metabol 31(5):502–511. doi:10.1139/H06-027

    Article  CAS  Google Scholar 

  8. Bjorkman O, Gunnarsson R, Hagstrom E, Felig P, Wahren J (1989) Splanchnic and renal exchange of infused fructose in insulin-deficient type 1 diabetic patients and healthy controls. J Clin Invest 83(1):52–59

    PubMed  Article  CAS  Google Scholar 

  9. Blaak EE, Saris WHM (1996) Postprandial thermogenesis and substrate utilization after ingestion of different dietary carbohydrates. Metabolism 45(10):1235–1242

    PubMed  Article  CAS  Google Scholar 

  10. Borg GA (1973) Perceived exertion: a note on “history” and methods. Med Sci Sports 5(2):90–93

    PubMed  Article  CAS  Google Scholar 

  11. Brand-Miller JC, Foster-Powell K, Colagiuri S, Leeds A (1998) The GI factor. Hodder Headline. Rydalmere, Australia

    Google Scholar 

  12. Bray GA, Nielsen SJ, Popkin BM (2004) Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 79(4):537–543

    PubMed  CAS  Google Scholar 

  13. Campbell PJ, Carlson MG, Hill JO, Nurjhan N (1992) Regulation of free fatty acid metabolism by insulin in humans: role of lipolysis and reesterification. Am J Physiol 263(6 Pt 1):E1063–E1069

    PubMed  CAS  Google Scholar 

  14. Chen YJ, Wong SH, Wong CK, Lam CW, Huang YJ, Siu PM (2008a) The effect of a pre-exercise carbohydrate meal on immune responses to an endurance performance run. Br J Nutr 100(6):1260–1268. doi:10.1017/S0007114508975619

    PubMed  Article  CAS  Google Scholar 

  15. Chen YJ, Wong SH, Wong CK, Lam CW, Huang YJ, Siu PM (2008b) Effect of preexercise meals with different glycemic indices and loads on metabolic responses and endurance running. Int J Sport Nutr Exerc Metab 18(3):281–300

    PubMed  Google Scholar 

  16. Chong MFF, Fielding BA, Frayn KN (2007) Mechanisms for the acute effect of fructose on postprandial lipemia. Am J Clin Nutr 85(6):1511–1520

    PubMed  CAS  Google Scholar 

  17. Coyle EF (1991) Timing and method of increased carbohydrate intake to cope with heavy training, competition and recovery. J Sports Sci 9:29–52

    PubMed  Article  Google Scholar 

  18. Coyle EF (1995) Substrate utilization during exercise in active people. Am J Clin Nutr 61(4):S968–S979

    Google Scholar 

  19. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35(8):1381–1395

    PubMed  Article  Google Scholar 

  20. Décombaz J, Sartori D, Arnaud MJ, Thelin AL, Schurch P, Howald H (1985) Oxidation and metabolic effects of fructose or glucose ingested before exercise. Int J Sports Med 6(5):282–286. doi:10.1055/s-2008-1025852

    PubMed  Article  Google Scholar 

  21. Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37(2):247–248

    PubMed  CAS  Google Scholar 

  22. Fielding RA, Costill DL, Fink WJ, King DS, Kovaleski JE, Kirwan JP (1987) Effects of pre-exercise carbohydrate feedings on muscle glycogen use during exercise in well-trained runners. Eur J Appl Physiol 56(2):225–229. doi:10.1007/BF00640649

    Article  CAS  Google Scholar 

  23. Frayn KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol 55(2):628–634

    PubMed  CAS  Google Scholar 

  24. Hargreaves M, Costill DL, Fink WJ, King DS, Fielding RA (1987) Effect of pre-exercise carbohydrate feedings on endurance cycling performance. Med Sci Sports Exerc 19(1):33–36

    PubMed  CAS  Google Scholar 

  25. Jenkins DJA, Wolever TMS, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV (1981) Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 34(3):362–366

    PubMed  CAS  Google Scholar 

  26. Johnson RJ, Perez-Pozo SE, Sautin YY, Manitius J, Sanchez-Lozada LG, Feig DI, Shafiu M, Segal M, Glassock RJ, Shimada M, Roncal C, Nakagawa T (2009) Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes? Endocr Rev 30(1):96–116. doi:10.1210/er.2008-0033

    PubMed  Article  CAS  Google Scholar 

  27. Lê KA, Tappy L (2006) Metabolic effects of fructose. Curr Opin Clin Nutr Metab Care 9(4):469–475

    PubMed  Article  Google Scholar 

  28. Marriott BP, Cole N, Lee E (2009) National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J Nutr 139(6):S1228–S1235. doi:10.3945/jn.108.098277

    Article  Google Scholar 

  29. McArdle WD, Katch FI, Katch VL (2006) Exercise physiology: energy, nutrition, and human performance, 6th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  30. Montain SJ, Hopper MK, Coggan AR, Coyle EF (1991) Exercise metabolism at different time intervals after a meal. J Appl Physiol 70(2):882–888

    PubMed  CAS  Google Scholar 

  31. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol Endocrinol Metab 265(3):E380–E391

    CAS  Google Scholar 

  32. Stanhope KL, Griffen SC, Bair BR, Swarbrick MM, Keim NL, Havel PJ (2008) Twenty-four-hour endocrine and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glucose-sweetened beverages with meals. Am J Clin Nutr 87(5):1194–1203

    PubMed  CAS  Google Scholar 

  33. Stevenson EJ, Astbury NM, Simpson EJ, Taylor MA, Macdonald IA (2009) Fat oxidation during exercise and satiety during recovery are increased following a low-glycemic index breakfast in sedentary women. J Nutr 139(5):890–897. doi:10.3945/jn.108.101956

    PubMed  Article  CAS  Google Scholar 

  34. Storey ML, Forshee RA, Anderson PA (2006) Beverage consumption in the US population. J Am Diet Assoc 106(12):1992–2000. doi:10.1016/j.jada.2006.09.009

    PubMed  Article  Google Scholar 

  35. Tarnopolsky LJ, MacDougall JD, Atkinson SA, Tarnopolsky MA, Sutton JR (1990) Gender differences in substrate for endurance exercise. J Appl Physiol 68(1):302–308

    PubMed  CAS  Google Scholar 

  36. Truswell AS, Seach JM, Thorburn AW (1988) Incomplete absorption of pure fructose in healthy subjects and the facilitating effect of glucose. Am J Clin Nutr 48(6):1424–1430

    PubMed  CAS  Google Scholar 

  37. Venables MC, Achten J, Jeukendrup AE (2005) Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol 98(1):160–167. doi:10.1152/japplphysiol.00662.2003

    PubMed  Article  Google Scholar 

  38. Wee SL, Williams C, Tsintzas K, Boobis L (2005) Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. J Appl Physiol 99(2):707–714. doi:10.1152/japplphysiol.01261.2004

    PubMed  Article  CAS  Google Scholar 

  39. Wolever TMS, Jenkins DJA (1986) The use of the glycemic index in predicting the blood glucose response to mixed meals. Am J Clin Nutr 43(1):167–172

    PubMed  CAS  Google Scholar 

  40. Wong SH, Siu PM, Lok A, Chen YJ, Morris J, Lam CW (2008) Effect of the glycaemic index of pre-exercise carbohydrate meals on running performance. Eur J Sport Sci 8(1):23–33. doi:10.1080/17461390701819451

    Article  Google Scholar 

  41. Wong SH, Williams C, Adams N (2000) Effects of ingesting a large volume of carbohydrate-electrolyte solution on rehydration during recovery and subsequent exercise capacity. Int J Sport Nutr Exerc Metab 10(4):375–393

    PubMed  CAS  Google Scholar 

  42. Wu CL, Nicholas C, Williams C, Took A, Hardy L (2003) The influence of high-carbohydrate meals with different glycaemic indices on substrate utilisation during subsequent exercise. Br J Nutr 90(06):1049–1056. doi:10.1079/BJN20031006

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Lee Hysan Foundation Research Grant (No. CA 11159). The authors wish to thank Dr. Susan CHUNG for providing the meals and nutritional calculation, and all the subjects for participating in this study.

Conflict of interest

There are no conflicts of interest that should be disclosed.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen Heung-Sang Wong.

Additional information

Communicated by Susan A. Ward.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sun, FH., Wong, S.HS., Huang, YJ. et al. Substrate utilization during brisk walking is affected by glycemic index and fructose content of a pre-exercise meal. Eur J Appl Physiol 112, 2565–2574 (2012). https://doi.org/10.1007/s00421-011-2231-6

Download citation

Keywords

  • Carbohydrate oxidation
  • Fat oxidation
  • Young males
  • Breakfast