Skip to main content
Log in

Effects of graded exercise-induced dehydration and rehydration on circulatory markers of oxidative stress across the resting and exercising human leg

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Exercise in the heat enhances oxidative stress markers in the human circulation, but the contribution of active skeletal muscle and the influence of hydration status remain unknown. To address this question, we measured leg exchange of glutathione (GSH), glutathione disulfide (GSSG), superoxide dismutase activity (SOD) and isoprostanes in seven males at rest and during submaximal one-legged knee extensor exercise in the following four conditions: (1) control euhydration (0% reduction in body mass), (2) mild-dehydration (2%), (3) moderate-dehydration (3.5%), (4) rehydration (0%). In all resting and control exercise conditions, a net GSH uptake was observed across the leg. In contrast, a significant leg release of GSH into the circulation (−354 ± 221 μmol/min, P < 0.05) was observed during exercise with moderate-dehydration, which was still present following full rehydration (−206 ± 122 μmol/min, P < 0.05). During exercise, mild and moderate-dehydration decreased both femoral venous erythrocyte SOD activity (195 ± 6 vs. 180 ± 5 U/L, P < 0.05) and plasma isoprostanes (30 ± 1.1 vs. 25.9 ± 1.3 pg/L, P < 0.05), but during rehydration these were not different from control. In conclusion, these findings suggest that active skeletal muscles release GSH into the circulation under moderate dehydration and subsequent rehydration, possibly to enhance the antioxidant defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bailey DM, Young IS, McEneny J, Lawrenson L, Kim J, Barden J, Richardson RS (2004) Regulation of free radical outflow from an isolated muscle bed in exercising humans. Am J Physiol Heart Circ Physiol 287(4):H1689–H1699

    Article  PubMed  CAS  Google Scholar 

  • Burk RF, Hill KE (1995). Reduced glutathione release into rat plasma by extrahepatic tissues. Am J Physiol 269(3 Pt 1):G396–G399

    Google Scholar 

  • Cazzola R, Russo-Volpe S, Cervato G, Cestaro B (2003) Biochemical assessments of oxidative stress, erythrocyte membrane fluidity and antioxidant status in professional soccer players and sedentary controls. Eur J Clin Invest 33:924–930

    Article  PubMed  CAS  Google Scholar 

  • Child RB, Wilkinson DM, Fallowfield JL, Donnelly AE (1998) Elevated serum antioxidant capacity and plasma malondialdehyde concentration in response to a simulated half-marathon run. Med Sci Sports Exerc 18:89–93

    Google Scholar 

  • Cotgreave IA, Goldschmidt L, Tonkonogi M, Svensson M (2002) Differentiation-specific alterations to glutathione synthesis in and hormonally stimulated release from human skeletal muscle cells. FASEB J 16(3):435–437

    PubMed  CAS  Google Scholar 

  • Dill DB, Costill DL (1974) Calculation of percentage changes in plasma volume of blood, plasma, and red cells in dehydration. J Appl Physiol 37(2):247–248

    PubMed  CAS  Google Scholar 

  • Dreissigacker U, Wendt M, Wittke T, Tsikas D, Maassen N (2010) Positive correlation between plasma nitrite and performance during high-intensive exercise but not oxidative stress in healthy men. Nitric Oxide 23:128–135

    Article  PubMed  CAS  Google Scholar 

  • Fernández JM, Da Silva-Grigoletto ME, Gómez-Puerto JR, Viana-Montaner BH, Tasset-Cuevas I, Túnez I, López-Miranda J, Pérez-Jiménez F (2009) A dose of fructose induces oxidative stress during endurance and strength exercise. J Sports Sci 27(12):1323–1334

    Article  PubMed  Google Scholar 

  • Gohil K, Viguie C, Stanley WC, Brooks GA, Packer L (1988) Blood glutathione oxidation during human exercise. J Appl Physiol 64(1):115–119

    PubMed  CAS  Google Scholar 

  • González-Alonso J, Crandall CG, Johnson JM (2008) The cardiovascular challenge of exercising in the heat. J Physiol 586(1):45–53

    Article  PubMed  Google Scholar 

  • Halliwell B, Gutteridge J (2006) Free radicals in biology and medicine, 4th edn. Oxford Bioscience, Boston

  • Hellsten Y, Svensson M, Sjödin B, Smith S, Christensen A, Richter EA, Bangsbo J (2001) Allantoin formation and urate and glutathione exchange in human muscle during submaximal exercise. Free Radic Biol Med 31(11):1313–1322

    Article  PubMed  CAS  Google Scholar 

  • Inayama T, Kashiba M, Oka J, Higuchi M, Umegaki K, Saito M, Yamamoto Y, Matsuda M (2002) Physical exercise induces oxidation of plasma protein thiols to cysteine mixed disulfides in humans. J Health Sci 48(5):399–403

    Article  CAS  Google Scholar 

  • Ji LL (1993) Antioxidant enzyme response to exercise and aging. Med Sci Sports Exerc 25(2):225–231

    PubMed  CAS  Google Scholar 

  • Ji LL (1995) Exercise and oxidative stress: role of the cellular antioxidant systems. Exerc Sport Sci Rev 23:135–166

    Article  PubMed  CAS  Google Scholar 

  • Laitano O, Kalsi KK, Pook M, Oliveira AR, González-Alonso J (2010) Separate and combined effects of heat stress and exercise on circulatory markers of oxidative stress in euhydrated humans. Eur J Appl Physiol 110(5):953–960

    Article  PubMed  CAS  Google Scholar 

  • Leeuwenburgh C, Ji LL (1995) Glutathione depletion in rested and exercised mice: biochemical consequence and adaptation. Arch Biochem Biophys 316(2):941–949

    Article  PubMed  CAS  Google Scholar 

  • Leeuwenburgh C, Ji LL (1996) Alteration of glutathione and antioxidant status with exercise in unfed and refed rats. J Nutr 126(7):1833–1843

    PubMed  CAS  Google Scholar 

  • Marcuello A, González-Alonso J, Calbet JA, Damsgaard R, López-Pérez MJ, Díez-Sánchez C (2005) Skeletal muscle mitochondrial DNA content in exercising humans. J Appl Physiol 99(4):1372–1377

    Article  PubMed  CAS  Google Scholar 

  • McAnulty SR, McAnulty L, Pascoe DD, Gropper SS, Keith RE, Morrow JD, Gladden LB (2005) Hyperthermia increases exercise-induced oxidative stress. Int J Sports Med 26(3):188–192

    Article  PubMed  CAS  Google Scholar 

  • Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208

    PubMed  CAS  Google Scholar 

  • Ng CF, Schafer FQ, Buettner GR, Rodgers VG (2007) The rate of cellular hydrogen peroxide removal shows dependency on GSH: mathematical insight into in vivo H2O2 and GPx concentrations. Free Radic Res 41(11):1201–1211

    Article  PubMed  CAS  Google Scholar 

  • Nieman DC, Henson DA, McAnulty SR, McAnulty L, Swick NS, Utter AC, Vinci DM, Opiela SJ, Morrow JD (2002) Influence of vitamin C supplementation on oxidative and immune changes after an ultramarathon. J Appl Physiol 92(5):1970–1977

    PubMed  CAS  Google Scholar 

  • Nikolaidis MG, Kyparos A, Vrabas IS (2011) F(2)-isoprostane formation, measurement and interpretation: the role of exercise. Prog Lipid Res 50(1):89–103

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka Y, Yabunaka N, Fujisawa H, Watanabe I, Agishi Y (1994) Effect of thermal stress on glutathione metabolism in human erythrocytes. Eur J Appl Physiol Occup Physiol 68(1):87–91

    Article  PubMed  CAS  Google Scholar 

  • Paik IY, Jeong MH, Jin HE, Kim YI, Suh AR, Cho SY, Roh HT, Jin CH, Suh SH (2009) Fluid replacement following dehydration reduces oxidative stress during recovery. Biochem Biophys Res Commun 383(1):103–107

    Article  PubMed  CAS  Google Scholar 

  • Rådegran G (1997) Ultrasound Doppler estimates of femoral artery blood flow during dynamic knee extensor exercise in humans. J Appl Physiol 83(4):1383–1388

    PubMed  Google Scholar 

  • Sahlin K, Ekberg K, Cizinsky S (1991) Changes in plasma hypoxanthine and free radical markers during exercise in man. Acta Physiol Scand 142:274–281

    Article  Google Scholar 

  • Sawka MN, Coyle EF (1999) Influence of body water and blood volume on thermoregulation and exercise performance in the heat. Exerc Sport Sci Rev 27:167–218

    PubMed  CAS  Google Scholar 

  • Schneider CD, Barp J, Ribeiro JL, Belló-Klein A, Oliveira AR (2005) Oxidative stress after three different intensities of running. Can J Appl Physiol 30(6):723–734

    Article  PubMed  CAS  Google Scholar 

  • Sen CK, Marin E, Kretzschmar M, Hänninen O (1992) Skeletal muscle and liver glutathione homeostasis in response to training, exercise, and immobilization. J Appl Physiol 73(4):1265–1272

    PubMed  CAS  Google Scholar 

  • Smith JA, Kolbuch-Braddon M, Gillam I, Telford RD, Weidermann MJ (1995) Changes in the susceptibility of red blood cells to oxidative and osmotic stress following submaximal exercise. Eur J Appl Physiol 70:427–436

    Article  CAS  Google Scholar 

  • Veskoukis AS, Nikolaidis MG, Kyparos A, Kouretas D (2009) Blood reflects tissue oxidative stress depending on biomarker and tissue studied. Free Radic Biol Med 47(10):1371–1374

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to Dr David Low and Dr Eric Stöhr for their technical support. Orlando Laitano was supported by a scholarship from CAPES (Brazilian Education Ministry-BEX 0323/08-0). The study was supported by a grant from the Brazilian Science and Technology Ministry (Edital MCT/CNPq 14/2008-Universal-473557/2008-8) and partially supported by the Gatorade Sports Science Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José González-Alonso.

Additional information

Communicated by Susan A. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laitano, O., Kalsi, K.K., Pearson, J. et al. Effects of graded exercise-induced dehydration and rehydration on circulatory markers of oxidative stress across the resting and exercising human leg. Eur J Appl Physiol 112, 1937–1944 (2012). https://doi.org/10.1007/s00421-011-2170-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2170-2

Keywords

Navigation