Advertisement

European Journal of Applied Physiology

, Volume 112, Issue 5, pp 1751–1762 | Cite as

Neurophysiological and behavioral effects of a 60 Hz, 1,800 μT magnetic field in humans

  • A. Legros
  • M. Corbacio
  • A. Beuter
  • J. Modolo
  • D. Goulet
  • F. S. Prato
  • A. W. Thomas
Original Article

Abstract

The effects of time-varying magnetic fields (MF) on humans have been actively investigated for the past three decades. One important unanswered question is the potential for MF exposure to have acute effects on human biology. Different strategies have been used to tackle this question using various physiological, neurophysiological and behavioral indicators. For example, researchers investigating electroencephalography (EEG) have reported that extremely low frequency (ELF, <300 Hz) MF can increase resting occipital alpha rhythm (8–12 Hz). Interestingly, other studies have demonstrated that human motricity can be modulated by ELF MF: a reduction of anteroposterior standing balance or a decrease of physiological tremor intensity have been reported as consequences of exposure. However, the main limitation in this domain lies in the lack of results replication, possibly originating from the large variety of experimental approaches employed. Therefore, the present study aimed to investigate the effects of a 60 Hz, 1,800 μT MF exposure on neurophysiological (EEG) and neuromotor (standing balance, voluntary motor function, and physiological tremor) aspects in humans using a single experimental procedure. Though results from this study suggest a reduction of human standing balance with MF exposure, as well as an increase of physiological tremor amplitude within the frequency range associated with central nervous system contribution, no exposure effect appeared on other investigated parameters (e.g., EEG or voluntary motor control). These results suggest that 1 h of 60 Hz, 1,800 μT MF exposure may modulate human involuntary motor control without being detected in the cortical electrical activity.

Keywords

Time-varying magnetic field 60 Hz Human Electroencephalography Tremor Standing balance 

Notes

Acknowledgments

The authors thank Mr. Lynn Keenliside for this technical assistance; Ms. Samantha Brown, Julie Weller and Mr. David McNamee for their assistance in the data collection. This project was sponsored by Hydro-Québec, Électricité de France and Réseau de Transport d’Électricité. This study was also in part supported by Canadian Institutes of Health Research grants (MOP 43874 and FRN 85217), the Ontario Research and Development Challenge Fund (MAR-01- 0936), and the Canadian Foundation for Innovation (11358).

References

  1. Attwell D (2003) Interaction of low frequency electric fields with the nervous system: the retina as a model system. Radiat Prot Dosim 106:341–348CrossRefGoogle Scholar
  2. Bailey WH, Nyenhuis JA (2005) Thresholds for 60 Hz magnetic field stimulation of peripheral nerves in human subjects. Bioelectromagnetics 26:462–468PubMedCrossRefGoogle Scholar
  3. Bell GB, Marino AA, Chesson AL (1992) Alterations in brain electrical activity caused by magnetic fields: detecting the detection process. Electroencephalogr Clin Neurophysiol 83:389–397PubMedCrossRefGoogle Scholar
  4. Bell GB, Marino AA, Chesson AL (1994a) Frequency-specific blocking in the human brain caused by electromagnetic fields. Neuroreport 5:510–512PubMedCrossRefGoogle Scholar
  5. Bell GB, Marino AA, Chesson AL (1994b) Frequency-specific responses in the human brain caused by electromagnetic fields. J Neurol Sci 123:26–32PubMedCrossRefGoogle Scholar
  6. Beuter A, Edwards R (1999) Using frequency domain characteristics to discriminate physiologic and parkinsonian tremors. J Clin Neurophysiol 16:484–494PubMedCrossRefGoogle Scholar
  7. Beuter A, Edwards R (2002) Characterization and discrimination of kinetic tremor in Parkinson’s disease. Rev Neurol (Paris) 158:338–340Google Scholar
  8. Beuter A, de Geoffroy A, Edwards R (1999a) Analysis of rapid alternating movements in Cree subjects exposed to methylmercury and in subjects with neurological deficits. Environ Res 80:64–79PubMedCrossRefGoogle Scholar
  9. Beuter A, de Geoffroy A, Edwards R (1999b) Quantitative analysis of rapid pointing movements in Cree subjects exposed to mercury and in subjects with neurological deficits. Environ Res 80:50–63PubMedCrossRefGoogle Scholar
  10. Beuter A, Legros A, Cif L et al (2004) Quantifying motion in dystonic syndromes: the bare essentials. J Clin Neurophysiol 21:209–214PubMedCrossRefGoogle Scholar
  11. Carrubba S, Frilot C 2nd, Chesson AL Jr et al (2007a) Evidence of a nonlinear human magnetic sense. Neuroscience 144:356–367PubMedCrossRefGoogle Scholar
  12. Carrubba S, Frilot C, Chesson AL et al (2007b) Nonlinear EEG activation evoked by low-strength low-frequency magnetic fields. Neurosci Lett 417:212–216PubMedCrossRefGoogle Scholar
  13. Cook MR, Graham C, Cohen HD et al (1992) A replication study of human exposure to 60-Hz fields: effects on neurobehavioral measures. Bioelectromagnetics 13:261–285PubMedCrossRefGoogle Scholar
  14. Cook CM, Thomas AW, Prato FS (2002) Human electrophysiological and cognitive effects of exposure to ELF magnetic and ELF modulated RF and microwave fields: a review of recent studies. Bioelectromagnetics 23:144–157PubMedCrossRefGoogle Scholar
  15. Cook CM, Thomas AW, Prato FS (2004) Resting EEG is affected by exposure to a pulsed ELF magnetic field. Bioelectromagnetics 25:196–203PubMedCrossRefGoogle Scholar
  16. Cook CM, Thomas AW, Keenliside L et al (2005a) Resting EEG effects during exposure to a pulsed ELF magnetic field. Bioelectromagnetics 26:367–376PubMedCrossRefGoogle Scholar
  17. Cook CM, Thomas AW, Prato FS (2005b) Changes in human EEG alpha activity following exposure to two different pulsed magnetic fields sequences. Bioelectromagnetics Annual Meeting, Dublin, IrelandGoogle Scholar
  18. Cook CM, Saucier DM, Thomas AW et al (2006) Exposure to ELF magnetic and ELF-modulated radiofrequency fields: The time course of physiological and cognitive effects observed in recent studies (2001–2005). Bioelectromagnetics 27:613–627PubMedCrossRefGoogle Scholar
  19. Crasson M (2003) 50-60 Hz electric and magnetic field effects on congitive function in humans: a review. Radiat Prot Dosimetry 106(4):333–340Google Scholar
  20. Despres C, Lamoureux D, Beuter A (2000) Standardization of a neuromotor test battery: the CATSYS system. Neurotoxicology 21:725–735PubMedGoogle Scholar
  21. Deuschl G, Raethjen J, Lindemann M et al (2001) The pathophysiology of tremor. Muscle Nerve 24:716–735PubMedCrossRefGoogle Scholar
  22. Dimbylow PJ (1998) Induced current densities from low-frequency magnetic fields in a 2 mm resolution, anatomically realistic model of the body. Phys Med Biol 43:221–230PubMedCrossRefGoogle Scholar
  23. Edwards R, Beuter A (2000) Using time domain characteristics to discriminate physiologic and parkinsonian tremors. J Clin Neurophysiol 17:87–100PubMedCrossRefGoogle Scholar
  24. Elble RJ, Koller WC (1990) Tremor. The John Hopkins University press, LondonGoogle Scholar
  25. Ferguson GA, Takane Y (2005) Statistical analysis in psychology and education. McGraw–Hill Ryerson Limited, MontréalGoogle Scholar
  26. Gandhi OP, Kang G, Wu D et al (2001) Currents induced in anatomic models of the human for uniform and nonuniform power frequency magnetic fields. Bioelectromagnetics 22:112–121PubMedCrossRefGoogle Scholar
  27. Gauger JR (1985) Household appliance magnetic field survey. IEEE Trans Power Appar Syst PAS 104:2436–2444Google Scholar
  28. Ghione S, Seppia CD, Mezzasalma L et al (2005) Effects of 50 Hz electromagnetic fields on electroencephalographic alpha activity, dental pain threshold and cardiovascular parameters in humans. Neurosci Lett 382:112–117PubMedCrossRefGoogle Scholar
  29. Glover PM, Cavin I, Qian W et al (2007a) Magnetic-field-induced vertigo: a theoretical and experimental investigation. Bioelectromagnetics 28:349–361PubMedCrossRefGoogle Scholar
  30. Glover PM, Eldeghaidy S, Mistry TR et al (2007b) Measurement of visual evoked potential during and after periods of pulsed magnetic field exposure. J Magn Reson Imaging 26:1353–1356PubMedCrossRefGoogle Scholar
  31. Graham C, Sastre A, Cook MR et al (2000a) Nocturnal magnetic field exposure: gender-specific effects on heart rate variability and sleep. Clin Neurophysiol 111:1936–1941PubMedCrossRefGoogle Scholar
  32. Graham C, Sastre A, Cook MR et al (2000b) Heart rate variability and physiological arousal in men exposed to 60 Hz magnetic fields. Bioelectromagnetics 21:480–482PubMedCrossRefGoogle Scholar
  33. Graham C, Sastre A, Cook MR et al (2000c) Exposure to strong ELF magnetic fields does not alter cardiac autonomic control mechanisms. Bioelectromagnetics 21:413–421PubMedCrossRefGoogle Scholar
  34. Greenland S, Kheifets L (2006) Leukemia attributable to residential magnetic fields: results from analyses allowing for study biases. Risk Anal 26:471–482PubMedCrossRefGoogle Scholar
  35. Heusser K, Tellschaft D, Thoss F (1997) Influence of an alternating 3 Hz magnetic field with an induction of 0.1 millitesla on chosen parameters of the human occipital EEG. Neurosci Lett 239:57–60PubMedCrossRefGoogle Scholar
  36. ICNIRP (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys 74:494–522Google Scholar
  37. ICNIRP (2010) Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys 99:818–836Google Scholar
  38. IEEE (2001) IEEE P1555/D5 Draft Standard for safety levels with respect to human exposure to electric and magnetic fields 0 to 3 kHz. IEEE, New YorkGoogle Scholar
  39. Kaune WT, Miller MC, Linet MS et al (2002) Magnetic fields produced by hand held hair dryers, stereo headsets, home sewing machines, and electric clocks. Bioelectromagnetics 23:14–25PubMedCrossRefGoogle Scholar
  40. Kingma H (2005) Thresholds for perception of direction of linear acceleration as a possible evaluation of the otolith function. BMC Ear Nose Throat Disord 5:5PubMedCrossRefGoogle Scholar
  41. Kurokawa Y, Nitta H, Imai H et al (2003) Can extremely low frequency alternating magnetic fields modulate heart rate or its variability in humans? Auton Neurosci 105:53–61PubMedCrossRefGoogle Scholar
  42. Lacy-Hulbert A, Metcalfe JC, Hesketh R (1998) Biological responses to electromagnetic fields. FASEB J 12:395–420PubMedGoogle Scholar
  43. Legros A, Beuter A (2005) Effect of a low intensity magnetic field on human motor behavior. Bioelectromagnetics 26:657–669PubMedCrossRefGoogle Scholar
  44. Legros A, Beuter A (2006) Individual subject sensitivity to extremely low frequency magnetic field. Neurotoxicology 27:534–546PubMedCrossRefGoogle Scholar
  45. Legros A, Cif L, Sygiel M et al (2004) Kinematic evaluation of dystonic syndromes in patients treated with deep brain stimulation. Rev Neurol (Paris) 160:793–804CrossRefGoogle Scholar
  46. Legros A, Gaillot P, Beuter A (2006) Transient effect of low-intensity magnetic field on human motor control. Med Eng Phys 28:827–836PubMedCrossRefGoogle Scholar
  47. Levallois P (2002) Hypersensitivity of human subjects to environmental electric and magnetic field exposure: a review of the literature. Environ Health Perspect 110(Suppl 4):613–618PubMedCrossRefGoogle Scholar
  48. Lovsund P, Oberg PA, Nilsson SE (1979) Influence on vision of extremely low frequence electromagnetic fields. Industrial measurements, magnetophosphene studies volunteers and intraretinal studies in animals. Acta Ophthalmol (Copenh) 57:812–821CrossRefGoogle Scholar
  49. Lovsund P, Oberg PA, Nilsson SE (1980a) Magneto- and electrophosphenes: a comparative study. Med Biol Eng Comput 18:758–764PubMedCrossRefGoogle Scholar
  50. Lovsund P, Oberg PA, Nilsson SE et al (1980b) Magnetophosphenes: a quantitative analysis of thresholds. Med Biol Eng Comput 18:326–334PubMedCrossRefGoogle Scholar
  51. Lyskov EB, Aleksanian ZA, Iousmiaki V et al (1993a) Neurophysiologic effects of short-term exposure to ultra-low-frequency magnetic field. Fiziol Cheloveka 19:121–125PubMedGoogle Scholar
  52. Lyskov EB, Juutilainen J, Jousmaki V et al (1993b) Effects of 45-Hz magnetic fields on the functional state of the human brain. Bioelectromagnetics 14:87–95PubMedCrossRefGoogle Scholar
  53. Lyskov E, Sandstrom M, Mild KH (2001) Provocation study of persons with perceived electrical hypersensitivity and controls using magnetic field exposure and recording of electrophysiological characteristics. Bioelectromagnetics 22:457–462PubMedCrossRefGoogle Scholar
  54. Maresh CM, Cook MR, Cohen HD et al (1988) Exercise testing in the evaluation of human responses to powerline frequency fields. Aviat Space Environ Med 59:1139–1145PubMedGoogle Scholar
  55. Marino AA, Nilsen E, Chesson AL Jr et al (2004) Effect of low-frequency magnetic fields on brain electrical activity in human subjects. Clin Neurophysiol 115:1195–1201PubMedCrossRefGoogle Scholar
  56. Maruvada PS, Jutras P (1993) Études des sites susceptibles d’entraîner des expositions élevées des travailleurs d’Hydro-Québec aux champs électriques et magnétiques Hydro-QuébecGoogle Scholar
  57. McAuley JH, Marsden CD (2000) Physiological and pathological tremors and rhythmic central motor control. Brain 123(Pt 8):1545–1567PubMedCrossRefGoogle Scholar
  58. McNamee DA, Legros AG, Krewski DR et al (2009) A literature review: the cardiovascular effects of exposure to extremely low frequency electromagnetic fields. Int Arch Occup Environ Health 82:919–933PubMedCrossRefGoogle Scholar
  59. McNamee DA, Corbacio M, Weller JK et al (2010) The cardiovascular response to an acute 1800-microT, 60-Hz magnetic field exposure in humans. Int Arch Occup Environ Health 83:441–454PubMedCrossRefGoogle Scholar
  60. Prato FS, Thomas AW, Cook CM (2001) Human standing balance is affected by exposure to pulsed ELF magnetic fields: light intensity-dependent effects. Neuroreport 12:1501–1505PubMedCrossRefGoogle Scholar
  61. Rubin GJ, Das Munshi J, Wessely S (2005) Electromagnetic hypersensitivity: a systematic review of provocation studies. Psychosom Med 67:224–232PubMedCrossRefGoogle Scholar
  62. Sastre A, Cook MR, Graham C (1998) Nocturnal exposure to intermittent 60 Hz magnetic fields alters human cardiac rhythm. Bioelectromagnetics 19:98–106PubMedCrossRefGoogle Scholar
  63. Sastre A, Graham C, Cook MR (2000) Brain frequency magnetic fields alter cardiac autonomic control mechanisms. Clin Neurophysiol 111:1942–1948PubMedCrossRefGoogle Scholar
  64. Saunders RD, Jefferys JG (2007) A neurobiological basis for ELF guidelines. Health Phys 92:596–603PubMedCrossRefGoogle Scholar
  65. Silny J (1986) The Influence of the Time-Varying Magnetic Field in the Human Organism. In: Bernhardt J (ed) Biological effects of static and extremely low frequency magnetic fields. MMV Meizin Verlag München, Neuherberg, pp 105–112Google Scholar
  66. Thomas AW, Drost DJ, Prato FS (2001a) Human subjects exposed to a specific pulsed (200 microT) magnetic field: effects on normal standing balance. Neurosci Lett 297:121–124PubMedCrossRefGoogle Scholar
  67. Thomas AW, White KP, Drost DJ et al (2001b) A comparison of rheumatoid arthritis and fibromyalgia patients and healthy controls exposed to a pulsed (200 microT) magnetic field: effects on normal standing balance. Neurosci Lett 309:17–20PubMedCrossRefGoogle Scholar
  68. WHO (2007) Extremely Low Frequency Fields Environmental Health Criteria Monograph No.238. WHO, Geneva. http://www.who.int/peh-emf/publications/Complet_DEC_2007.pdf

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. Legros
    • 1
    • 2
  • M. Corbacio
    • 1
    • 2
  • A. Beuter
    • 3
  • J. Modolo
    • 1
    • 2
  • D. Goulet
    • 4
  • F. S. Prato
    • 1
    • 2
  • A. W. Thomas
    • 1
    • 2
  1. 1.Imaging Division, Lawson Health Research InstituteSt. Joseph’s Health CareLondonCanada
  2. 2.Department of Medical BiophysicsUniversity of Western OntarioLondonCanada
  3. 3.Bordeaux Polytechnic InstituteBordeaux UniversityPessac CedexFrance
  4. 4.Hydro-Québec TransEnergieMontrealCanada

Personalised recommendations