Skip to main content
Log in

Effects of mild-exercise training cessation in human skeletal muscle

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Stoppage of endurance exercise training leads to complete loss of maximal oxygen uptake (\( \dot{V}{\text{O}}_{ 2\max } \)) gain but not submaximal exercise blood lactate concentrations. However, the detailed mechanisms are still unknown. Thus, we investigated the effects of exercise-training cessation at lactate threshold (LT) intensity on physiological adaptations and global mRNA expressions in human skeletal muscle. The \( \dot{V}{\text{O}}_{ 2\max } \), muscle capillaries density and global gene expression were measured after 12 weeks of LT training, and after 12 weeks of detraining. Twelve weeks of detraining reversed the effect of 12 weeks LT training on \( \dot{V}{\text{O}}_{ 2\max } \) and \( \dot{V}{\text{O}}_{ 2} \) at LT intensity, although the later value was higher than the pre-training level. Moreover, the training cessation did not affect the number of capillaries around type I fiber, which was increased by training. The training modulated 243 characterized transcripts, in which 77% showed a significant reversible effect by detraining. However, the transcripts most-induced by the training were still elevated after the same period of detraining. The pathway and network analysis revealed that these genes were related to oxidative phosphorylation (OxPhos), calcium signalling and tissue development. Therefore, these physiological and transcriptional changes suggest improved oxygen supply and OxPhos in the skeletal muscle, which may contribute to the incomplete loss of absolute \( \dot{V}{\text{O}}_{ 2} \) at LT intensity after training cessation. The present study does not only demonstrate, for the first time, sustained effects of training after detraining at the transcriptional level, but also indicates the possible signalling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen P (1975) Capillary density in skeletal muscle of man. Acta Physiol Scand 95:203–205

    Article  PubMed  CAS  Google Scholar 

  • Bergman BC, Wolfel EE, Butterfield GE, Lopaschuk GD, Casazza GA, Horning MA, Brooks GA (1999) Active muscle and whole body lactate kinetics after endurance training in men. J Appl Physiol 87:1684–1696

    PubMed  CAS  Google Scholar 

  • Block BA (1994) Thermogenesis in muscle. Annu Rev Physiol 56:535–577

    Article  PubMed  CAS  Google Scholar 

  • Bottinelli R, Reggiani C (2000) Human skeletal muscle fibres: molecular and functional diversity. Prog Biophys Mol Biol 73:195–262

    Article  PubMed  CAS  Google Scholar 

  • Coyle EF, Martin WH 3rd, Sinacore DR, Joyner MJ, Hagberg JM, Holloszy JO (1984) Time course of loss of adaptations after stopping prolonged intense endurance training. J Appl Physiol 57:1857–1864

    PubMed  CAS  Google Scholar 

  • Coyle EF, Martin WH 3rd, Bloomfield SA, Lowry OH, Holloszy JO (1985) Effects of detraining on responses to submaximal exercise. J Appl Physiol 59:853–859

    PubMed  CAS  Google Scholar 

  • Davison RC, Coleman D, Balmer J, Nunn M, Theakston S, Burrows M, Bird S (2000) Assessment of blood lactate: practical evaluation of the Biosen 5030 lactate analyzer. Med Sci Sports Exerc 32:243–247

    Article  PubMed  CAS  Google Scholar 

  • Dinel S, Bolduc C, Belleau P, Boivin A, Yoshioka M, Calvo E, Piedboeuf B, Snyder EE, Labrie F, St-Amand J (2005) Reproducibility, bioinformatic analysis and power of the SAGE method to evaluate changes in transcriptome. Nucl Acids Res 33:e26

    Google Scholar 

  • Dubouchaud H, Butterfield GE, Wolfel EE, Bergman BC, Brooks GA (2000) Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. Am J Physiol Endocrinol Metab 278:E571–E579

    PubMed  CAS  Google Scholar 

  • Duteil S, Bourrilhon C, Raynaud JS, Wary C, Richardson RS, Leroy-Willig A, Jouanin JC, Guezennec CY, Carlier PG (2004) Metabolic and vascular support for the role of myoglobin in humans: a multiparametric NMR study. Am J Physiol Regul Integr Comp Physiol 287:R1441–R1449

    Article  PubMed  CAS  Google Scholar 

  • Friedmann B, Kinscherf R, Borisch S, Richter G, Bartsch P, Billeter R (2003) Effects of low-resistance/high-repetition strength training in hypoxia on muscle structure and gene expression. Pflugers Arch 446:742–751

    Article  PubMed  CAS  Google Scholar 

  • Goldman RF, Buskirk ER (eds) (1961) A method for underwater weighing and the determination of body density. National Research Council, Washington DC

    Google Scholar 

  • Hashimoto T, Brooks GA (2008) Mitochondrial lactate oxidation complex and an adaptive role for lactate production. Med Sci Sports Exerc 40:486–494

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA (2007) Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J 21:2602–2612

    Article  PubMed  CAS  Google Scholar 

  • Houston ME, Bentzen H, Larsen H (1979) Interrelationships between skeletal muscle adaptations and performance as studied by detraining and retraining. Acta Physiol Scand 105:163–170

    Article  PubMed  CAS  Google Scholar 

  • Kanatous SB, Mammen PP (2010) Regulation of myoglobin expression. J Exp Biol 213:2741–2747

    Article  PubMed  CAS  Google Scholar 

  • Keller P, Vollaard N, Babraj J, Ball D, Sewell DA, Timmons JA (2007) Using systems biology to define the essential biological networks responsible for adaptation to endurance exercise training. Biochem Soc Trans 35:1306–1309

    Article  PubMed  CAS  Google Scholar 

  • Klausen K, Andersen LB, Pelle I (1981) Adaptive changes in work capacity, skeletal muscle capillarization and enzyme levels during training and detraining. Acta Physiol Scand 113:9–16

    Article  PubMed  CAS  Google Scholar 

  • Lange S, Auerbach D, McLoughlin P, Perriard E, Schafer BW, Perriard JC, Ehler E (2002) Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2. J Cell Sci 115:4925–4936

    Article  PubMed  CAS  Google Scholar 

  • Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B, Gunnarsson LG, Hughes SM, Marchand S, Sejersen T, Richard I, Edstrom L, Ehler E, Udd B, Gautel M (2005) The kinase domain of titin controls muscle gene expression and protein turnover. Science 308:1599–1603

    Article  PubMed  CAS  Google Scholar 

  • Lange S, Ehler E, Gautel M (2006) From A to Z and back? Multicompartment proteins in the sarcomere. Trends Cell Biol 16:11–18

    Article  PubMed  CAS  Google Scholar 

  • Lash AE, Tolstoshev CM, Wagner L, Schuler GD, Strausberg RL, Riggins GJ, Altschul SF (2000) SAGEmap: a public gene expression resource. Genome Res 10:1051–1060

    Article  PubMed  CAS  Google Scholar 

  • Mall S, Broadbridge R, Harrison SL, Gore MG, Lee AG, East JM (2006) The presence of sarcolipin results in increased heat production by Ca2+-ATPase. J Biol Chem 281:36597–36602

    Article  PubMed  CAS  Google Scholar 

  • McGrath MJ, Cottle DL, Nguyen MA, Dyson JM, Coghill ID, Robinson PA, Holdsworth M, Cowling BS, Hardeman EC, Mitchell CA, Brown S (2006) Four and a half LIM protein 1 binds myosin-binding protein C and regulates myosin filament formation and sarcomere assembly. J Biol Chem 281:7666–7683

    Article  PubMed  CAS  Google Scholar 

  • Mujika I, Padilla S (2001) Cardiorespiratory and metabolic characteristics of detraining in humans. Med Sci Sports Exerc 33:413–421

    Article  PubMed  CAS  Google Scholar 

  • Neufer PD (1989) The effect of detraining and reduced training on the physiological adaptations to aerobic exercise training. Sports Med 8:302–320

    Article  PubMed  CAS  Google Scholar 

  • Nishida Y, Tokuyama K, Nagasaka S, Higaki Y, Shirai Y, Kiyonaga A, Shindo M, Kusaka I, Nakamura T, Ishibashi S, Tanaka H (2004) Effect of moderate exercise training on peripheral glucose effectiveness, insulin sensitivity, and endogenous glucose production in healthy humans estimated by a two-compartment-labeled minimal model. Diabetes 53:315–320

    Article  PubMed  CAS  Google Scholar 

  • Nishida Y, Tanaka H, Tobina T, Murakami K, Shono N, Shindo M, Ogawa W, Yoshioka M, St-Amand J (2010) Regulation of muscle genes by moderate exercise. Int J Sports Med 31:656–670

    Article  PubMed  CAS  Google Scholar 

  • Ookawara T, Suzuk K, Haga S, Ha S, Chung KS, Toshinai K, Hamaoka T, Katsumura T, Takemasa T, Mizuno M, Hitomi Y, Kizaki T, Suzuki K, Ohno H (2002) Transcription regulation of gene expression in human skeletal muscle in response to endurance training. Res Commun Mol Pathol Pharmacol 111:41–54

    PubMed  CAS  Google Scholar 

  • Orlander J, Kiessling KH, Karlsson J, Ekblom B (1977) Low intensity training, inactivity and resumed training in sedentary men. Acta Physiol Scand 101:351–362

    Article  PubMed  CAS  Google Scholar 

  • Padykula HA, Herman E (1955) The specificity of the histochemical method for adenosine triphosphatase. J Histochem Cytochem 3:170–195

    Article  PubMed  CAS  Google Scholar 

  • Parsons SA, Wilkins BJ, Bueno OF, Molkentin JD (2003) Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice. Mol Cell Biol 23:4331–4343

    Article  PubMed  CAS  Google Scholar 

  • Philippar U, Schratt G, Dieterich C, Muller JM, Galgoczy P, Engel FB, Keating MT, Gertler F, Schule R, Vingron M, Nordheim A (2004) The SRF target gene Fhl2 antagonizes RhoA/MAL-dependent activation of SRF. Mol Cell 16:867–880

    Article  PubMed  CAS  Google Scholar 

  • Sakuma K, Yamaguchi A (2010) The functional role of calcineurin in hypertrophy, regeneration, and disorders of skeletal muscle. J Biomed Biotechnol 2010:721219

  • Shono N, Urata H, Saltin B, Mizuno M, Harada T, Shindo M, Tanaka H (2002) Effects of low intensity aerobic training on skeletal muscle capillary and blood lipoprotein profiles. J Atheroscler Thromb 9:78–85

    Article  PubMed  CAS  Google Scholar 

  • Smith WS, Broadbridge R, East JM, Lee AG (2002) Sarcolipin uncouples hydrolysis of ATP from accumulation of Ca2+ by the Ca2+-ATPase of skeletal-muscle sarcoplasmic reticulum. Biochem J 361:277–286

    Article  PubMed  CAS  Google Scholar 

  • St-Amand J, Okamura K, Matsumoto K, Shimizu S, Sogawa Y (2001) Characterization of control and immobilized skeletal muscle: an overview from genetic engineering. FASEB J 15:684–692

    Article  PubMed  CAS  Google Scholar 

  • Svedahl K, MacIntosh BR (2003) Anaerobic threshold: the concept and methods of measurement. Can J Appl Physiol 28:299–323

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Nishida Y, Tobina T, Murakami K, Shono N, Shindo M, Yoshioka M, St-Amand J (2006) Moderate exercise training at lactate threshold favorably modulates gene expression in human skeletal muscle. Obes Rev 7:154

    Google Scholar 

  • Teran-Garcia M, Rankinen T, Koza RA, Rao DC, Bouchard C (2005) Endurance training-induced changes in insulin sensitivity and gene expression. Am J Physiol Endocrinol Metab 288:E1168–E1178

    Article  PubMed  CAS  Google Scholar 

  • Timmons JA (2011) Variability in training-induced skeletal muscle adaptation. J Appl Physiol (in press)

  • Timmons JA, Larsson O, Jansson E, Fischer H, Gustafsson T, Greenhaff PL, Ridden J, Rachman J, Peyrard-Janvid M, Wahlestedt C, Sundberg CJ (2005) Human muscle gene expression responses to endurance training provide a novel perspective on Duchenne muscular dystrophy. FASEB J 19:750–760

    Article  PubMed  CAS  Google Scholar 

  • Timmons JA, Norrbom J, Scheele C, Thonberg H, Wahlestedt C, Tesch P (2006) Expression profiling following local muscle inactivity in humans provides new perspective on diabetes-related genes. Genomics 87:165–172

    Article  PubMed  CAS  Google Scholar 

  • Timmons JA, Knudsen S, Rankinen T, Koch LG, Sarzynski M, Jensen T, Keller P, Scheele C, Vollaard NB, Nielsen S, Akerstrom T, MacDougald OA, Jansson E, Greenhaff PL, Tarnopolsky MA, van Loon LJ, Pedersen BK, Sundberg CJ, Wahlestedt C, Britton SL, Bouchard C (2010) Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J Appl Physiol 108:1487–1496

    Article  PubMed  CAS  Google Scholar 

  • Tupling AR, Asahi M, MacLennan DH (2002) Sarcolipin overexpression in rat slow twitch muscle inhibits sarcoplasmic reticulum Ca2+ uptake and impairs contractile function. J Biol Chem 277:44740–44746

    Article  PubMed  CAS  Google Scholar 

  • Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H (2001) Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol 91:173–182

    PubMed  CAS  Google Scholar 

  • Wu H, Rothermel B, Kanatous S, Rosenberg P, Naya FJ, Shelton JM, Hutcheson KA, DiMaio JM, Olson EN, Bassel-Duby R, Williams RS (2001) Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J 20:6414–6423

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka M, Boivin A, Ye P, Labrie F, St-Amand J (2006) Effects of dihydrotestosterone on skeletal muscle transcriptome in mice measured by serial analysis of gene expression. J Mol Endocrinol 36:247–259

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all subjects who participated in this study. This work was supported by a grant from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (No. 15200050) as well as the Fukuoka University Institute for Physical Activity and the Global FU Program grant by Fukuoka University. Jonny St-Amand is an investigator supported by the Fonds de la recherche en santé du Québec (FRSQ).

Conflict of interest

None of the authors of this article have any conflicts of interest or financial conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonny St-Amand.

Additional information

Communicated by Dick F. Stegeman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 121 kb)

Supplementary material 2 (PDF 14819 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

St-Amand, J., Yoshioka, M., Nishida, Y. et al. Effects of mild-exercise training cessation in human skeletal muscle. Eur J Appl Physiol 112, 853–869 (2012). https://doi.org/10.1007/s00421-011-2036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2036-7

Keywords

Navigation