Skip to main content
Log in

Effect of obesity and metabolic syndrome on hypoxic vasodilation

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study was designed to test whether obese adults and adults with metabolic syndrome (MetSyn) exhibit altered hyperemic responses to hypoxia at rest and during forearm exercise when compared with lean controls. We hypothesized blood flow responses due to hypoxia would be lower in young obese subjects (n = 11, 24 ± 2 years, BMI 36 ± 2 kg m−2) and subjects with MetSyn (n = 8, 29 ± 3 years BMI 39 ± 2 kg m−2) when compared with lean adults (n = 13, 29 ± 2 years, BMI 24 ± 1 kg m−2). We measured forearm blood flow (FBF, Doppler Ultrasound) and arterial oxygen saturation (pulse oximetry) during rest and steady-state dynamic forearm exercise (20 contractions/min at 8 and 12 kg) under two conditions: normoxia (0.21 FiO2, ~98% SaO2) and hypoxia (~0.10 FiO2, 80% SaO2). Forearm vascular conductance (FVC) was calculated as FBF/mean arterial blood pressure. At rest, the percent change in FVC with hypoxia was greater in adults with MetSyn when compared with lean controls (p = 0.02); obese and lean adult responses were not statistically different. Exercise increased FVC from resting levels in all groups (p < 0.05). Hypoxia caused an additional increase in FVC (p < 0.05) that was not different between groups; responses to hypoxia were heterogeneous within and between groups. Reporting FVC responses as absolute or percent changes led to similar conclusions. These results suggest adults with MetSyn exhibit enhanced hypoxic vasodilation at rest. However, hypoxic responses during exercise in obese adults and adults with MetSyn were not statistically different when compared with lean adults. Individual hypoxic vasodilatory responses were variable, suggesting diversity in vascular control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blaak EE, van Baak MA, Kemerink GJ, Pakbiers MT, Heidendal GA, Saris WH (1994) Total forearm blood flow as an indicator of skeletal muscle blood flow: effect of subcutaneous adipose tissue blood flow. Clin Sci (Lond) 87:559–566

    CAS  Google Scholar 

  • Calbet JA, Boushel R, Radegran G, Sondergaard H, Wagner PD, Saltin B (2003) Determinants of maximal oxygen uptake in severe acute hypoxia. Am J Physiol Regul Integr Comp Physiol 284:R291–R303

    PubMed  CAS  Google Scholar 

  • Casey DP, Madery BD, Curry TB, Eisenach JH, Wilkins BW, Joyner MJ (2010) Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise. J Physiol 588:373–385

    Article  PubMed  CAS  Google Scholar 

  • Casey DP, Walker BG, Curry TB, Joyner MJ (2011) Ageing reduces the compensatory vasodilatation during hypoxic exercise: the role of nitric oxide. J Physiol 589(Pt 6):1477–1488

    Article  PubMed  CAS  Google Scholar 

  • Charkoudian N (2001) Influences of female reproductive hormones on sympathetic control of the circulation in humans. Clin Auton Res 11:295–301

    Article  PubMed  CAS  Google Scholar 

  • Charkoudian N (2010) Heterogeneity in human cardiovascular function contributes to a deeper understanding of integrative mechanisms. J Appl Physiol 108:473–474

    Article  PubMed  Google Scholar 

  • Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, Van Pelt RE, Wang H, Eckel RH (2008) The metabolic syndrome. Endocr Rev 29:777–822

    Article  PubMed  CAS  Google Scholar 

  • DeLorey DS, Shaw CN, Shoemaker JK, Kowalchuk JM, Paterson DH (2004) The effect of hypoxia on pulmonary O2 uptake, leg blood flow and muscle deoxygenation during single-leg knee-extension exercise. Exp Physiol 89:293–302

    Article  PubMed  Google Scholar 

  • Di Vanna A, Braga AM, Laterza MC, Ueno LM, Rondon MU, Barretto AC, Middlekauff HR, Negrao CE (2007) Blunted muscle vasodilatation during chemoreceptor stimulation in patients with heart failure. Am J Physiol Heart Circ Physiol 293:H846–H852

    Article  PubMed  CAS  Google Scholar 

  • Dinenno FA, Joyner MJ (2006) Alpha-adrenergic control of skeletal muscle circulation at rest and during exercise in aging humans. Microcirculation 13:329–341

    Article  PubMed  CAS  Google Scholar 

  • Dinenno FA, Tanaka H, Stauffer BL, Seals DR (2001) Reductions in basal limb blood flow and vascular conductance with human ageing: role for augmented alpha-adrenergic vasoconstriction. J Physiol 536:977–983

    Article  PubMed  CAS  Google Scholar 

  • Dinenno FA, Dietz NM, Joyner MJ (2002) Aging and forearm post-junctional α-adrenergic vasoconstriction in healthy men. Circulation 106:1349–1354

    Article  PubMed  CAS  Google Scholar 

  • Dinenno FA, Joyner MJ, Halliwill JR (2003) Failure of systemic hypoxia to blunt alpha-adrenergic vasoconstriction in the human forearm. J Physiol 549:985–994

    Article  PubMed  CAS  Google Scholar 

  • Donato AJ, Uberoi A, Wray DW, Nishiyama S, Lawrenson L, Richardson R (2006) Differential effects of aging on limb blood flow in humans. Am J Physiol Heart Circ Physiol 290:H272–H278

    Article  PubMed  CAS  Google Scholar 

  • Frisbee JC (2001) Impaired dilation of skeletal muscle microvessels to reduced oxygen tension in diabetic obese Zucker rats. Am J Physiol Heart Circ Physiol 281:H1568–H1574

    PubMed  CAS  Google Scholar 

  • Frisbee JC (2003) Impaired skeletal muscle perfusion in obese Zucker rats. Am J Physiol Regul Integr Comp Physiol 285:R1124–R1134

    PubMed  CAS  Google Scholar 

  • Frisbee JC (2004) Enhanced arteriolar alpha-adrenergic constriction impairs dilator responses and skeletal muscle perfusion in obese Zucker rats. J Appl Physiol 97:764–772

    Article  PubMed  CAS  Google Scholar 

  • Frisbee JC, Stepp DW (2001) Impaired NO-dependent dilation of skeletal muscle arterioles in hypertensive diabetic obese Zucker rats. Am J Physiol Heart Circ Physiol 281:H1304–H1311

    PubMed  CAS  Google Scholar 

  • Frisbee JC, Maier KG, Stepp DW (2002) Oxidant stress-induced increase in myogenic activation of skeletal muscle resistance arteries in obese Zucker rats. Am J Physiol Heart Circ Physiol 283:H2160–H2168

    PubMed  CAS  Google Scholar 

  • Goodwill AG, James ME, Frisbee JC (2008) Increased vascular thromboxane generation impairs dilation of skeletal muscle arterioles of obese Zucker rats with reduced oxygen tension. Am J Physiol Heart Circ Physiol 295:H1522–H1528

    Article  PubMed  CAS  Google Scholar 

  • Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C (2004) Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109:433–438

    Article  PubMed  Google Scholar 

  • Heinonen IH, Kemppainen J, Kaskinoro K, Peltonen JE, Borra R, Lindroos M, Oikonen V, Nuutila P, Knuuti J, Boushel R, Kalliokoski KK (2010) Regulation of human skeletal muscle perfusion and its heterogeneity during exercise in moderate hypoxia. Am J Physiol Regul Integr Comp Physiol 299:R72–R79

    Article  PubMed  CAS  Google Scholar 

  • Koskolou MD, Calbet JA, Radegran G, Roach RC (1997) Hypoxia and the cardiovascular response to dynamic knee-extensor exercise. Am J Physiol 272:H2655–H2663

    PubMed  CAS  Google Scholar 

  • Lambert E, Straznicky N, Schlaich M, Esler M, Dawood T, Hotchkin E, Lambert G (2007) Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension 50:862–868

    Article  PubMed  CAS  Google Scholar 

  • Limberg JK, De Vita MD, Blain GM, Schrage WG (2010a) Muscle blood flow responses to dynamic exercise in young obese humans. J Appl Physiol 108:349–355

    Article  PubMed  CAS  Google Scholar 

  • Limberg JK, Eldridge MW, Proctor LT, Sebranek JJ, Schrage WG (2010b) Alpha-adrenergic control of blood flow during exercise: effect of sex and menstrual phase. J Appl Physiol 109:1360–1368

    Article  PubMed  CAS  Google Scholar 

  • Moradkhan R, Spitnale B, McQuillan P, Hogeman C, Gray KS, Leuenberger UA (2010) Hypoxia-induced vasodilation and effects of regional phentolamine in awake patients with sleep apnea. J Appl Physiol 108:1234–1240

    Article  PubMed  Google Scholar 

  • Narkiewicz K, Kato M, Pesek CA, Somers VK (1999) Human obesity is characterized by a selective potentiation of central chemoreflex sensitivity. Hypertension 33:1153–1158

    PubMed  CAS  Google Scholar 

  • Owen JA (1975) Physiology of the menstrual cycle. Am J Clin Nutr 28:333–338

    PubMed  CAS  Google Scholar 

  • Reichmuth KJ, Dopp JM, Barczi SR, Skatrud JB, Wojdyla P, Hayes D Jr, Morgan BJ (2009) Impaired vascular regulation in patients with obstructive sleep apnea: effects of continuous positive airway pressure treatment. Am J Respir Crit Care Med 180:1143–1150

    Article  PubMed  Google Scholar 

  • Remsburg S, Launois SH, Weiss JW (1999) Patients with obstructive sleep apnea have an abnormal peripheral vascular response to hypoxia. J Appl Physiol 87:1148–1153

    PubMed  CAS  Google Scholar 

  • Richardson RS, Grassi B, Gavin TP, Haseler LJ, Tagore K, Roca J, Wagner PD (1999) Evidence of O2 supply-dependent VO2 max in the exercise-trained human quadriceps. J Appl Physiol 86:1048–1053

    PubMed  CAS  Google Scholar 

  • Roach RC, Koskolou MD, Calbet JA, Saltin B (1999) Arterial O2 content and tension in regulation of cardiac output and leg blood flow during exercise in humans. Am J Physiol 276:H438–H445

    PubMed  CAS  Google Scholar 

  • Rowell LB, Blackmon JR (1986) Lack of sympathetic vasoconstriction in hypoxemic humans at rest. Am J Physiol 251:H562–H570

    PubMed  CAS  Google Scholar 

  • Saito M, Mano T, Iwase S, Koga K, Abe H, Yamazaki Y (1988) Responses in muscle sympathetic activity to acute hypoxia in humans. J Appl Physiol 65:1548–1552

    PubMed  CAS  Google Scholar 

  • Schrage WG, Joyner MJ, Dinenno FA (2004) Local inhibition of nitric oxide and prostaglandins independently reduce forearm exercise hyperaemia in humans. J Physiol 557:599–611

    Article  PubMed  CAS  Google Scholar 

  • Seals DR, Johnson DG, Fregosi RF (1991) Hypoxia potentiates exercise-induced sympathetic neural activation in humans. J Appl Physiol 71:1032–1040

    PubMed  CAS  Google Scholar 

  • Stepp DW, Frisbee JC (2002) Augmented adrenergic vasoconstriction in hypertensive diabetic obese Zucker rats. Am J Physiol Heart Circ Physiol 282:H816–H820

    PubMed  CAS  Google Scholar 

  • Stickland MK, Smith CA, Soriano BJ, Dempsey JA (2009) Sympathetic restraint of muscle blood flow during hypoxic exercise. Am J Physiol Regul Integr Comp Physiol 296:R1538–R1546

    Article  PubMed  CAS  Google Scholar 

  • Weisbrod CJ, Eastwood PR, O’Driscoll G, Walsh JH, Best M, Halliwill JR, Green DJ (2004) Vasomotor responses to hypoxia in type 2 diabetes. Diabetes 53:2073–2078

    Article  PubMed  CAS  Google Scholar 

  • Wilkins BW, Schrage WG, Liu Z, Hancock KC, Joyner MJ (2006) Systemic hypoxia and vasoconstrictor responsiveness in exercising human muscle. J Appl Physiol 101:1343–1350

    Article  PubMed  CAS  Google Scholar 

  • Wilkins BW, Pike TL, Martin EA, Curry TB, Ceridon ML, Joyner MJ (2008) Exercise intensity-dependent contribution of beta-adrenergic receptor-mediated vasodilatation in hypoxic humans. J Physiol 586:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Williams MR, Westerman RA, Kingwell BA, Paige J, Blombery PA, Sudhir K, Komsesaroff PA (2001) Variations in endothelial function and arterial compliance during the menstrual cycle. J Clin Endocrinol Metab 86:5389–5395

    Article  PubMed  CAS  Google Scholar 

  • Xiang L, Dearman J, Abram SR, Carter C, Hester RL (2008) Insulin resistance and impaired functional vasodilation in obese Zucker rats. Am J Physiol Heart Circ Physiol 294:H1658–H1666

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the subjects for their participation. In addition, we extend many thanks to John Harrell, Kathleen Grabowski, Adam Kiefer, Patrick Meyer, Caitlin Zillner, and Lee Linstroth for technical assistance. This study was supported by grants from the American Federation on Aging Research #A08235 (WGS), American Heart Association pre-doctoral awards #0815622G (JKL) and #10PRE3870000 (JKL) and American Heart Association post-doctoral award #0825858G (GMB).

Conflict of interest

There are no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline K. Limberg.

Additional information

Communicated by Keith Phillip George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limberg, J.K., Evans, T.D., Blain, G.M. et al. Effect of obesity and metabolic syndrome on hypoxic vasodilation. Eur J Appl Physiol 112, 699–709 (2012). https://doi.org/10.1007/s00421-011-2025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2025-x

Keywords

Navigation