Skip to main content

Advertisement

Log in

Synchronous whole-body vibration increases VO2 during and following acute exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Single bout whole-body vibration (WBV) exercise has been shown to produce small but significant increases in oxygen consumption (VO2). How much more a complete whole-body exercise session (multiple dynamic exercises targeting both upper and lower body muscles) can increase VO2 is unknown. The purpose of this study was to quantify VO2 during and for an extended time period (24 h) following a multiple exercise WBV exercise session versus the same session without vibration (NoV). VO2 of healthy males (n = 8) was measured over 24 h on a day that included a WBV exercise session versus a day with the same exercise session without vibration (NoV), and versus a control day (no exercise). Upper and lower body exercises were studied (five, 30 s, 15 repetition sets of six exercises; 1:1 exercise:recovery ratio over 30 min). Diet was controlled. VO2 was 23% greater (P = 0.002) during the WBV exercise session versus the NoV session (62.5 ± 12.0 vs. 50.7 ± 8.2 L O2) and elicited a higher (P = 0.033) exercise heart rate versus NoV (139 ± 6 vs. 126 ± 11 bpm). Total O2 consumed over 8 and 24 h following the WBV exercise was also increased (P < 0.010) (240.5 ± 28.3 and 518.9 ± 61.2 L O2) versus both NoV (209.7 ± 22.9 and 471.1 ± 51.6 L O2) and control (151.4 ± 20.7 and 415.2 ± 51.6 L O2). NoV was also increased versus control (P < 0.003). A day with a 30-min multiple exercise, WBV session increased 24 h VO2 versus a day that included the same exercise session without vibration, and versus a non-exercise day by 10 and 25%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abercromby AF, Amonette WE, Layne CS, McFarlin BK, Hinman MR, Paloski WH (2007) Variation in neuromuscular responses during acute whole-body vibration exercise. Med Sci Sports Exerc 39:1642–1650. doi:10.1249/mss.0b013e318093f551

    Article  PubMed  Google Scholar 

  • Borsheim E, Bahr R (2003) Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports Med 33:1037–1060

    Article  PubMed  Google Scholar 

  • Bosco C, Colli R, Introini E et al (1999) Adaptive responses of human skeletal muscle to vibration exposure. Clin Physiol 19:183–187

    Article  PubMed  CAS  Google Scholar 

  • Cardinale M, Bosco C (2003) The use of vibration as an exercise intervention. Exerc Sport Sci Rev 31:3–7

    Article  PubMed  Google Scholar 

  • Cardinale M, Lim J (2003) Electromyography activity of vastus lateralis muscle during whole-body vibrations of different frequencies. J Strength Cond Res 17:621–624

    PubMed  Google Scholar 

  • Cochrane DJ, Stannard SR, Sargeant AJ, Rittweger J (2008) The rate of muscle temperature increase during acute whole-body vibration exercise. Eur J Appl Physiol 103:441–448. doi:10.1007/s00421-008-0736-4

    Article  PubMed  CAS  Google Scholar 

  • Cormie P, Deane RS, Triplett NT, McBride JM (2006) Acute effects of whole-body vibration on muscle activity, strength, and power. J Strength Cond Res 20:257–261. doi:10.1519/R-17835.1

    PubMed  Google Scholar 

  • Da Silva ME, Fernandez JM, Castillo E et al (2007) Influence of vibration training on energy expenditure in active men. J Strength Cond Res 21:470–475. doi:10.1519/R-19025.1

    PubMed  Google Scholar 

  • Da Silva-Grigoletto ME, Vaamonde DM, Castillo E, Poblador MS, Garcia-Manso JM, Lancho JL (2009) Acute and cumulative effects of different times of recovery from whole body vibration exposure on muscle performance. J Strength Cond Res 23:2073–2082. doi:10.1519/JSC.0b013e3181b865d2

    Article  PubMed  Google Scholar 

  • de Ruiter CJ, van der Linden RM, van der Zijden MJ, Hollander AP, de Haan A (2003) Short-term effects of whole-body vibration on maximal voluntary isometric knee extensor force and rate of force rise. Eur J Appl Physiol 88:472–475. doi:10.1007/s00421-002-0723-0

    Article  PubMed  Google Scholar 

  • Erskine J, Smillie I, Leiper J, Ball D, Cardinale M (2007) Neuromuscular and hormonal responses to a single session of whole body vibration exercise in healthy young men. Clin Physiol Funct Imaging 27:242–248. doi:10.1111/j.1475-097X.2007.00745.x

    Article  PubMed  Google Scholar 

  • Fjeldstad C, Palmer IJ, Bemben MG, Bemben DA (2009) Whole-body vibration augments resistance training effects on body composition in postmenopausal women. Maturitas 63:79–83. doi:10.1016/j.maturitas.2009.03.013

    Article  PubMed  Google Scholar 

  • Garatachea N, Jimenez A, Bresciani G, Marino NA, Gonzalez-Gallego J, de Paz JA (2007) The effects of movement velocity during squatting on energy expenditure and substrate utilization in whole-body vibration. J Strength Cond Res 21:594–598. doi:10.1519/R-20566.1

    PubMed  Google Scholar 

  • Guggenheimer JD, Dickin DC, Reyes GF, Dolny DG (2009) The effects of specific preconditioning activities on acute sprint performance. J Strength Cond Res 23:1135–1139. doi:10.1519/JSC.0b013e318191892e

    Article  PubMed  Google Scholar 

  • Hagbarth KE, Eklund G (1966) Tonic vibration reflexes (TVR) in spasticity. Brain Res 2:201–203

    Article  PubMed  CAS  Google Scholar 

  • Hazell TJ, Jakobi JM, Kenno KA (2007) The effects of whole-body vibration on upper- and lower-body EMG during static and dynamic contractions. Appl Physiol Nutr Metab 32:1156–1163. doi:10.1139/h07-116

    Article  PubMed  Google Scholar 

  • Hazell TJ, Thomas GW, Deguire JR, Lemon PW (2008) Vertical whole-body vibration does not increase cardiovascular stress to static semi-squat exercise. Eur J Appl Physiol 104:903–908. doi:10.1007/s00421-008-0847-y

    Article  PubMed  Google Scholar 

  • Hazell TJ, Kenno KA, Jakobi JM (2010) Evaluation of muscle activity for loaded and unloaded dynamic squats during vertical whole-body vibration. J Strength Cond Res 24:1860–1865. doi:10.1519/JSC.0b013e3181ddf6c8

    Article  PubMed  Google Scholar 

  • Jacobsen DJ, Bailey BW, LeCheminant JD, Hill JO, Mayo MS, Donnelly JE (2005) A comparison of three methods of analyzing post-exercise oxygen consumption. Int J Sports Med 26:34–38. doi:10.1055/s-2004-815819

    Article  PubMed  CAS  Google Scholar 

  • Koonar S (2006) Physical therapy platform assembly. World Intellectual Property Organization. http://www.wipo.int/pctdb/en/wo.jsp?WO=2006117667. Accessed March 26, 2011

  • Laforgia J, Withers RT, Shipp NJ, Gore CJ (1997) Comparison of energy expenditure elevations after submaximal and supramaximal running. J Appl Physiol 82:661–666

    PubMed  CAS  Google Scholar 

  • LaForgia J, Withers RT, Gore CJ (2006) Effects of exercise intensity and duration on the excess post-exercise oxygen consumption. J Sports Sci 24:1247–1264. doi:10.1080/02640410600552064

    Article  PubMed  CAS  Google Scholar 

  • Luu YK, Capilla E, Rosen CJ et al (2009) Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. J Bone Miner Res 24:50–61. doi:10.1359/jbmr.080817

    Article  PubMed  CAS  Google Scholar 

  • Maddalozzo GF, Iwaniec UT, Turner RT, Rosen CJ, Widrick JJ (2008) Whole-body vibration slows the acquisition of fat in mature female rats. Int J Obes (Lond) 32:1348–1354. doi:10.1038/ijo.2008.111

    Article  CAS  Google Scholar 

  • Marin PJ, Bunker D, Rhea MR, Ayllon FN (2009) Neuromuscular activity during whole-body vibration of different amplitudes and footwear conditions: implications for prescription of vibratory stimulation. J Strength Cond Res 23:2311–2316. doi:10.1519/JSC.0b013e3181b8d637

    Article  PubMed  Google Scholar 

  • McBride JM, Nuzzo JL, Dayne AM, Israetel MA, Nieman DC, Triplett NT (2010) Effect of an acute bout of whole body vibration exercise on muscle force output and motor neuron excitability. J Strength Cond Res 24:184–189. doi:10.1519/JSC.0b013e31819b79cf

    Article  PubMed  Google Scholar 

  • Melby C, Scholl C, Edwards G, Bullough R (1993) Effect of acute resistance exercise on postexercise energy expenditure and resting metabolic rate. J Appl Physiol 75:1847–1853

    PubMed  CAS  Google Scholar 

  • Noreen EE, Lemon PW (2006) Reliability of air displacement plethysmography in a large, heterogeneous sample. Med Sci Sports Exerc 38:1505–1509. doi:10.1249/01.mss.0000228950.60097.01

    Article  PubMed  Google Scholar 

  • Rittweger J, Beller G, Felsenberg D (2000) Acute physiological effects of exhaustive whole-body vibration exercise in man. Clin Physiol 20:134–142

    Article  PubMed  CAS  Google Scholar 

  • Rittweger J, Schiessl H, Felsenberg D (2001) Oxygen uptake during whole-body vibration exercise: comparison with squatting as a slow voluntary movement. Eur J Appl Physiol 86:169–173

    Article  PubMed  CAS  Google Scholar 

  • Rittweger J, Ehrig J, Just K, Mutschelknauss M, Kirsch KA, Felsenberg D (2002) Oxygen uptake in whole-body vibration exercise: influence of vibration frequency, amplitude, and external load. Int J Sports Med 23:428–432. doi:10.1055/s-2002-33739

    Article  PubMed  CAS  Google Scholar 

  • Ritzmann R, Kramer A, Gruber M, Gollhofer A, Taube W (2010) EMG activity during whole body vibration: motion artifacts or stretch reflexes? Eur J Appl Physiol 110:143–151. doi:10.1007/s00421-010-1483-x

    Google Scholar 

  • Roelants M, Delecluse C, Goris M, Verschueren S (2004) Effects of 24 weeks of whole body vibration training on body composition and muscle strength in untrained females. Int J Sports Med 25:1–5. doi:10.1055/s-2003-45238

    Article  PubMed  CAS  Google Scholar 

  • Roelants M, Verschueren SM, Delecluse C, Levin O, Stijnen V (2006) Whole-body-vibration-induced increase in leg muscle activity during different squat exercises. J Strength Cond Res 20:124–129. doi:10.1519/R-16674.1

    PubMed  Google Scholar 

  • Ronnestad BR (2009) Acute effects of various whole-body vibration frequencies on lower-body power in trained and untrained subjects. J Strength Cond Res 23:1309–1315. doi:10.1519/JSC.0b013e318199d720

    Article  PubMed  Google Scholar 

  • Rubin CT, Capilla E, Luu YK et al (2007) Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc Natl Acad Sci USA 104:17879–17884. doi:10.1073/pnas.0708467104

    Article  PubMed  CAS  Google Scholar 

  • Thomas S, Reading J, Shephard RJ (1992) Revision of the physical activity readiness questionnaire (PAR-Q). Can J Sport Sci 17:338–345

    PubMed  CAS  Google Scholar 

  • Torvinen S, Kannu P, Sievanen H et al (2002a) Effect of a vibration exposure on muscular performance and body balance. Randomized cross-over study. Clin Physiol Funct Imaging 22:145–152

    Article  PubMed  Google Scholar 

  • Torvinen S, Sievanen H, Jarvinen TA, Pasanen M, Kontulainen S, Kannus P (2002b) Effect of 4-min vertical whole body vibration on muscle performance and body balance: a randomized cross-over study. Int J Sports Med 23:374–379. doi:10.1055/s-2002-33148

    Article  PubMed  CAS  Google Scholar 

  • Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S (2004) Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res 19:352–359. doi:10.1359/JBMR.0301245

    Article  PubMed  Google Scholar 

  • von Stengel S, Kemmler W, Engelke K, Kalender WA (2010) Effect of whole-body vibration on neuromuscular performance and body composition for females 65 years and older: a randomized-controlled trial. Scand J Med Sci Sports. doi:10.1111/j.1600-0838.2010.01126.x

  • Wakeling JM, Nigg BM (2001) Modification of soft tissue vibrations in the leg by muscular activity. J Appl Physiol 90:412–420

    PubMed  CAS  Google Scholar 

  • Wilcock IM, Whatman C, Harris N, Keogh JW (2009) Vibration training: could it enhance the strength, power, or speed of athletes? J Strength Cond Res 23:593–603. doi:10.1519/JSC.0b013e318196b81f

    PubMed  Google Scholar 

Download references

Acknowledgments

Meals were provided with funds from a Kinesiology Graduate Research Award Grant from The University of Western Ontario awarded to Tom J. Hazell. Whole-body Advanced Vibration Exercise, (WAVE™; Windsor, Canada) donated the platform for scientific use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom J. Hazell.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazell, T.J., Lemon, P.W.R. Synchronous whole-body vibration increases VO2 during and following acute exercise. Eur J Appl Physiol 112, 413–420 (2012). https://doi.org/10.1007/s00421-011-1984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1984-2

Keywords

Navigation