Skip to main content

Advertisement

Log in

A rehabilitation exercise program to remediate skeletal muscle atrophy in an estrogen-deficient organism may be ineffective

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

To determine rehabilitation exercise program effects under hormone deficient (ovariectomy or OVX) and hormone supplemented [OVX + 17-beta estradiol (E2)] conditions. Mature female rats (n = 123) were assigned to OVX or OVX + E2-supplemented groups. OVX and OVX + E2 groups were allocated to one of four conditions: (1) control, (2) hindlimb unweighted (HLU) for 4 weeks to induce muscle atrophy, (3) cage Recovery for 2 weeks after HLU, and (4) Recovery with 2 weeks of rehabilitation exercise program after 4 weeks of HLU. Atrophy following HLU was comparable for OVX and OVX + E2-supplemented rats and was significant in all muscles examined (soleus, tibialis anterior, plantaris, gastrocnemius, quadriceps). Also significant with HLU was the decline in muscle force (P < 0.05) in soleus, plantaris, gastrocnemius and tibialis anterior (quadriceps not tested). There were trends toward return of muscle mass in Recovery OVX and Recovery OVX + E2 groups but only the E2 supplemented OVX rats had return of muscle mass (4/5 muscles studied) with exercise. Peak tetanic tension (Po) returned to control values in the E2 supplemented Exercise rats but not in the unsupplemented Exercise group. For example, gastrocnemius Po for OVX HLU, OVX Recovery and OVX-Exercise groups was 82%*, 82%* and 76%* of control. Gastrocnemius Po for E2 supplemented HLU, Recovery and Exercise groups was 72%*, 95% and 106% of control (*P < 0.05 compared to control). H&E cross-sections from OVX-Exercise rats showed central nuclei. In conclusion, a rehabilitation exercise program to remediate acute atrophy in females appears more effective if E2 is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bamman M, Ragan RC, Kim JS, Cross JM, Hill VJ, Tuggle SC, Allman RM (2004) Myogenic protein expression before and after resistance loading in 26- and 64-yr-old men and women. J Appl Physiol 97:1329–1337

    Article  PubMed  CAS  Google Scholar 

  • Bar PR, Amelink GJ, Oldenburg B, Blankenstein MA (1998) Prevention of exercise induced muscle membrane damage by oestradiol. Life Sci 42:2677–2681

    Article  Google Scholar 

  • Bodine SC (2006) mTOR signaling, the molecular adaptation to resistance exercise. Med Sci Sport Exerc 38:1950–1957

    Article  CAS  Google Scholar 

  • Bombadier E, Vigna C, Iqbal S, Tiidus PM, Tupling AR (2009) Effects of ovarian hormones and downhill running on fiber-type specific HSP70 expression in rat soleus. J Appl Physiol 106:2009–2015

    Article  Google Scholar 

  • Brown M, Taylor J, Gabriel R (2003) Differential effectiveness of low intensity exercise in young and old rats. J Gerontol Biol Sci 58B:889–894

    Article  Google Scholar 

  • Brown M, Foley AM, Hasser E, Foley CM (2005a) A successful alternative to the traditional hindlimb suspension method in the rat. J Graviat Physiol 12:43–50

    Google Scholar 

  • Brown M, Foley AM, Ferreira JA et al (2005b) Ovariectomy hind limb unweighting, recovery effects on skeletal muscle in adult rats. Aviat Space Environ Med 76:1012–1018

    PubMed  Google Scholar 

  • Brown M, Ning J, Ferreira JA, Bogener JL, Lubahn DB (2009) Estrogen receptor-α and -β and aromatase knockout effects on lower limb muscle mass and contractile function in female mice. Am J Physiol Endocrinol Metab 296:E854–E861

    Article  PubMed  CAS  Google Scholar 

  • Ciocca DR, Vargas Roig LM (1995) Estrogen receptors in human nontarget tissues: biological and clinical implications. Endocr Rev 16:35–62

    PubMed  CAS  Google Scholar 

  • Clarkson PM, Hubal MJ (2002) Exercise-induced muscle damage in humans. Am J Phys Med Rehabil 8:S52–S58

    Article  Google Scholar 

  • Cooke VE, Carlisle RT, Talbot RT, Boswell T, Mitchell MA (2003) Oestrogen receptor alpha (ERα) and beta (ERβ) in chicken skeletal muscle: mediators of myo-protection? Br Poult Sci 44(Suppl):S12–S13

    Article  CAS  Google Scholar 

  • Dahlberg E (1982) Characterization of the cytosolic estrogen receptor in rat skeletal muscle. Biochim Biophys Acta 16:65–75

    Article  Google Scholar 

  • Dobbs AS, Nguyen T, Pace C, Roberts CP (2002) Differential effects of oral estrogen versus oral estrogen-androgen replacement therapy on body composition in postmenopausal women. J Clin Endocrinol Metab 87:1509–1516

    Article  Google Scholar 

  • Enns DL, Tiidus PM (2008) Estrogen influences satellite cell activation and proliferation following downhill running in rats. J Appl Physiol 104:347–353

    Article  PubMed  Google Scholar 

  • Fisher JS, Hasser EM, Brown M (1998) Effects of ovariectomy and hindlimb unloading on skeletal muscle. J Appl Physiol 85:1316–1321

    PubMed  CAS  Google Scholar 

  • Galuzzo P, Rastelli C, Bulzomi P, Acconcia F, Pallottini V, Marino M (2009) 17-β etradiol regulates the first steps of skeletal muscle differentiation via ERα-mediated signals. Am J Physiol Cell Physiol 297:C1249–C1262

    Article  Google Scholar 

  • Glenmark B, Nilsson M, Gao H, Gustafsson JA, Wright KD, Westerblad H (2004) Difference in skeletal muscle function in male vs female: role of estrogen receptor-β. Am J Physiol Endocrinol Metab 287:E1125–E1131

    Article  PubMed  CAS  Google Scholar 

  • Greeves JP, Cable NT, Reilly T, Kingsland C (1999) Changes in muscle strength in women following the menopause: a longitudinal assessment of the efficacy of hormone replacement therapy. Clin Sci 97:79–84

    Article  PubMed  CAS  Google Scholar 

  • Greising SM, Baltgalvis KA, Lowe DA, Warren GL (2009) Hormone therapy and skeletal muscle strength: a meta-analysis. J Gerontol A Biol Sci Med Sci 64:1071–1081

    Article  PubMed  Google Scholar 

  • Ihemelandu EC (1981) Comparison of effect of oestrogen on muscle development of male and female mice. Acta Anat 110:311–317

    Article  PubMed  CAS  Google Scholar 

  • Kahlert S, Grohe C, Karas RH, Löbbert K, Neyses L, Vetter H (1997) Effects of estrogen on skeletal myoblast growth. Biochem Biophys Res Commun 232:373–378

    Article  PubMed  CAS  Google Scholar 

  • Kalbe C, Mau M, Wollenhaupt K, Rehfeldt C (2007) Evidence for estrogen receptor alpha and beta expression in skeletal muscle of pigs. Histochem Cell Biol 127:95–107

    Article  PubMed  CAS  Google Scholar 

  • Kincl FA, Ringold HJ, Dorfman RI (1961) Pituitary gonadotropin inhibition by subcutaneously administered steroids. Acta Endocrinol 68:17–24

    Google Scholar 

  • Knutsson A, Glenmark B, Bodin K, Jansson E, Enmark E (2002) Estrogen receptor alpha and beta in human skeletal muscle. FASEB J 16:A396–A403

    Google Scholar 

  • Koot RW, Amelink CG, Blankenstein MA, Bar PR (1991) Tamoxifen and oestrogen both protect the rat muscle against physiological damage. J Steroid Biochem Mol Biol 40(4–6):689–695

    Article  PubMed  CAS  Google Scholar 

  • Lemoine S, Granier P, Tiffoche C, Berthon PM, Thieulant ML, Carre F, Delamarche P (2002) Effect of endurance training on estrogen receptor alpha expression in different rat skeletal muscle type. Acta Physiol Scand 175:211–217

    Article  PubMed  CAS  Google Scholar 

  • Lemoine S, Granier P, Tiffoche C, Rannou-Bekono F, Thieulant ML, Delamarche P (2003) Estrogen receptor alpha mRNA in human skeletal muscles. Med Sci Sports Exerc 35:439–443

    Article  PubMed  CAS  Google Scholar 

  • McClung JM, Davis JM, Wilson MA, Goldsmith EC, Carson JA (2006) Estrogen status and skeletal muscle recovery from disuse atrophy. J Appl Physiol 100:2012–2023

    Article  PubMed  CAS  Google Scholar 

  • Moran AL, Warren GL, Lowe DA (2006) Removal of ovarian hormones from mature mice detrimentally affects muscle contractile function and myosin structural distribution. J Appl Physiol 100:548–559

    Article  PubMed  CAS  Google Scholar 

  • Moran AL, Nelson SA, Landisch RM, Warren GL, Lowe DA (2007) Estradiol replacement reverses ovariectomy-induced muscle contractile and myosin dysfunction in mature female mice. J Appl Physiol 102:1387–1392

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW, Lange IG, Daxenberger A, Meyer HH (2001) Tissue-specific pattern of estrogen receptors (ER): quantification of ERα and ERβ mRNA with real-time RT-PCR. APMIS 109:345–355

    Article  PubMed  CAS  Google Scholar 

  • Phillips SK, Rook KM, Siddle NC, Bruce SA, Woledge RC (1993) Muscle weakness in women occurs at an earlier age than in men, but strength is preserved by hormone replacement therapy. Clin Sci (Lond) 84:95–98

    CAS  Google Scholar 

  • Riley DA (1998) Review of primary spaceflight-induced and secondary reloading-induced changes in slow antigravity muscles of rats. Adv Space Res 21:1073–1075

    Article  PubMed  CAS  Google Scholar 

  • Rogers E, Wagner AK (2006) Gender, sex steroids, and neuroprotection following traumatic brain injury. J Head Trauma Rehabil 21:279–281

    Article  PubMed  Google Scholar 

  • Ronda AC, Buitragooo C, Boland R (2010) Role of estrogen receptors, PKC and Src in ERK2 and p38MAPK signaling triggered by 17-β estradiol in skeletal muscle cells. J Steroid Biochem Mol Biol 122:287–294

    Article  PubMed  CAS  Google Scholar 

  • Rothman MS, Arciniegas DB, Filley CM, Wierman ME (2007) The neuroendocrine effects of traumatic brain injury. J Neuropsychiatry Clin Neurosci 19:363–372

    Article  PubMed  CAS  Google Scholar 

  • Sandri M (2007) Signaling in muscle atrophy and hypertrophy. Physiology 23:160–170

    Article  Google Scholar 

  • Santollo J, Wiley MD, Eckel LA (2007) Acute activation of ER alpha decreases food intake, meals size, and body weight in ovariectomized rats. Am J Physiol Regul Integr Comp Physiol 293:194–201

    Article  Google Scholar 

  • Sarwar R, Nichols BB, Rutherford OM (1996) Change in muscle strength, relaxation rate, and fatigueability during the human menstrual cycle. J Physiol 193:267–272

    Google Scholar 

  • Sipila S, Poutamo J (2003) Muscle performance, sex hormones and training in per-menopausal and post-menopausal women. Scand J Med Sci Sport 13:19–25

    Article  CAS  Google Scholar 

  • Sipski ML, Jackson AB, Gómez-Marín O, Estores I, Stein A (2004) Effects of gender on neurologic and functional recovery after spinal cord injury. Arch Phys Med Rehabil 85:1826–1836

    Article  PubMed  Google Scholar 

  • Sitnick M, Foley AM, Brown M, Spangenburg EE (2006) Ovariectomy prevents the recovery of atrophied gastrocnemius muscle mass. J Appl Physiol 100:286–293

    Article  PubMed  CAS  Google Scholar 

  • Sotiriadou S, Kyparos A, Albani M, Arsos G, Clarke MS, Sidiras G, Angelopoulou N, Matziari C (2006) Soleus muscle force following downhill running in ovariectomized rats treated with estrogen. Appl Physiol Nutr Metab 31:449–459

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Yamamuro T (1985) Long-term effects of estrogen on rat skeletal muscle. Exp Neurol 87:291–299

    Article  PubMed  CAS  Google Scholar 

  • Svensson J, Movarare-Skrtic S, Swanson C, Ohlsson N, Sjogren K (2010) Estrogen and androgen receptor stimulation increases skeletal muscle mass in gonadectomized mice via different pathways. J Mol Endocrinol 45:45–57

    Article  PubMed  CAS  Google Scholar 

  • Thomas A, Bunyan K, Tiidus PM (2010) Oestrogen receptor-alpha activation augments post-exercise myoblast proliferation. Acta Physiol 198:81–89

    Article  CAS  Google Scholar 

  • Tiidus PM, Deller M, Liu XL (2005) Oestrogen influence on myogenic satellite cells following downhill running in male rats: a preliminary study. Acta Physiol Scand 184:667–672

    Article  Google Scholar 

  • Trenkle A (1976) The anabolic effect of estrogens on nitrogen metabolism of growing and finishing cattle and sheep. Environ Qual Saf Suppl 5:79–88

    PubMed  CAS  Google Scholar 

  • Wiik A, Glenmark B, Ekman M, Esbjörnssoon-Liljedahl M, Johansson O, Bodin K, Enmark E, Jansson E (2003) Oestrogen receptor β is expressed in adult human skeletal muscle both at the mRNA and protein level. Acta Physiol Scand 179:381–387

    Article  PubMed  CAS  Google Scholar 

  • Wiik A, Ekman M, Johansson O, Jansson E, Esbjörnsson M (2008) Expression of both oesterogen receptor alpha and beta in human skeletal muscle. Histochem Cell Biol 131:181–189

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was funded by University of Missouri Research Council grant, University of Missouri Research Board grant, HD 058834 from the NIH, and the Missouri Spinal Cord Injuries Research Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marybeth Brown.

Additional information

Communicated by Håkan Westerblad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, M., Ferreira, J.A., Foley, A.M. et al. A rehabilitation exercise program to remediate skeletal muscle atrophy in an estrogen-deficient organism may be ineffective. Eur J Appl Physiol 112, 91–104 (2012). https://doi.org/10.1007/s00421-011-1925-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1925-0

Keywords

Navigation