European Journal of Applied Physiology

, Volume 111, Issue 11, pp 2845–2853 | Cite as

Acute effects of walking in forest environments on cardiovascular and metabolic parameters

  • Qing Li
  • Toshiaki Otsuka
  • Maiko Kobayashi
  • Yoko Wakayama
  • Hirofumi Inagaki
  • Masao Katsumata
  • Yukiyo Hirata
  • YingJi Li
  • Kimiko Hirata
  • Takako Shimizu
  • Hiroko Suzuki
  • Tomoyuki Kawada
  • Takahide Kagawa
Original Article

Abstract

We previously found that forest environments reduced stress hormones such as adrenaline and noradrenaline and showed the relaxing effect both in male and female subjects. In the present study, we investigated the effects of walking under forest environments on cardiovascular and metabolic parameters. Sixteen healthy male subjects (mean age 57.4 ± 11.6 years) were selected after obtaining informed consent. The subjects took day trips to a forest park in the suburbs of Tokyo and to an urban area of Tokyo as a control in September 2010. On both trips, they walked for 2 h in the morning and afternoon on a Sunday. Blood and urine were sampled on the morning before each trip and after each trip. Blood pressure was measured on the morning (0800) before each trip, at noon (1300), in the afternoon (1600) during each trip, and on the morning (0800) after each trip. The day trip to the forest park significantly reduced blood pressure and urinary noradrenaline and dopamine levels and significantly increased serum adiponectin and dehydroepiandrosterone sulfate (DHEA-S) levels. Walking exercise also reduced the levels of serum N-terminal pro-B-type natriuretic peptide (NT-proBNP) and urinary dopamine. Taken together, habitual walking in forest environments may lower blood pressure by reducing sympathetic nerve activity and have beneficial effects on blood adiponectin and DHEA-S levels, and habitual walking exercise may have beneficial effects on blood NT-proBNP levels.

Keywords

Adiponectin Adrenaline Blood pressure DHEA-S Forest environment NT-proBNP Walking 

References

  1. Antoni MH (2003) Stress management effects on psychological, endocrinological, and immune functioning in men with HIV infection: empirical support for a psychoneuroimmunological model. Stress 6:173–188PubMedCrossRefGoogle Scholar
  2. Berent R, von Duvillard SP, Crouse SF, Auer J, Green JS, Sinzinger H, Schmid P (2009) Short-term residential cardiac rehabilitation reduces B-type natriuretic peptide. Eur J Cardiovasc Prev Rehabil 16:603–608PubMedCrossRefGoogle Scholar
  3. Bjørgaas MR, Vik JT, Stølen T, Lydersen S, Grill V (2008) Regular use of pedometer does not enhance beneficial outcomes in a physical activity intervention study in type 2 diabetes mellitus. Metabolism 57:605–611PubMedCrossRefGoogle Scholar
  4. Bjørnerem A, Straume B, Midtby M, Fønnebø V, Sundsfjord J, Svartberg J, Acharya G, Oian P, Berntsen GK (2004) Endogenous sex hormones in relation to age, sex, lifestyle factors, and chronic diseases in a general population: The Tromso Study. J Clin Endocrinol Metab 89:6039–6047PubMedCrossRefGoogle Scholar
  5. Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, Stave CD, Olkin I, Sirard JR (2007) Using pedometers to increase physical activity and improve health: a systematic review. JAMA 298:2296–2304PubMedCrossRefGoogle Scholar
  6. Brzoza Z, Kasperska-Zajac A, Badura-Brzoza K, Matysiakiewicz J, Hese RT, Rogala B (2008) Decline in dehydroepiandrosterone sulfate observed in chronic urticaria is associated with psychological distress. Psychosom Med 70:723–728PubMedCrossRefGoogle Scholar
  7. Chang RY, Koo M, Ho MY, Lin ZZ, Yu ZR, Lin YF, Wang BJ (2011) Effects of Tai Chi on adiponectin and glucose homeostasis in individuals with cardiovascular risk factors. Eur J Appl Physiol 111:57–66Google Scholar
  8. Dayawansa S, Umeno K, Takakura H, Hori E, Tabuchi E, Nagashima Y, Oosu H, Yada Y, Suzuki T, Ono T, Nishijo H (2003) Autonomic responses during inhalation of natural fragrance of Cedrol in humans. Auton Neurosci 108:79–86PubMedCrossRefGoogle Scholar
  9. de Lemos JA, McGuire DK, Drazner MH (2003) B-type natriuretic peptide in cardiovascular disease. Lancet 362:316–322PubMedCrossRefGoogle Scholar
  10. Ferguson MA, White LJ, McCoy S, Kim HW, Petty T, Wilsey J (2004) Plasma adiponectin response to acute exercise in healthy subjects. Eur J Appl Physiol 91:324–329PubMedCrossRefGoogle Scholar
  11. Frankenhaeuser M (1975) Experimental approach to the study of catecholamines and emotion. In: Levi L (ed) Emotions, their parameters and measurement.Raven Press, New York, pp 209Google Scholar
  12. Frassl W, Kowoll R, Katz N, Speth M, Stangl A, Brechtel L, Joscht B, Boldt LH, Meier-Buttermilch R, Schlemmer M, Roecker L, Gunga HC (2008) Cardiac markers (BNP, NT-pro-BNP, Troponin I, Troponin T, in female amateur runners before and up until three days after a marathon. Clin Lab 54:81–87PubMedGoogle Scholar
  13. Jürimäe J, Purge P, Jürimäe T (2005) Adiponectin is altered after maximal exercise in highly trained male rowers. Eur J Appl Physiol 93:502–505PubMedCrossRefGoogle Scholar
  14. Jürimäe J, Purge P, Jürimäe T (2006) Adiponectin and stress hormone responses to maximal sculling after volume-extended training season in elite rowers. Metabolism 55:13–19PubMedCrossRefGoogle Scholar
  15. Kraemer RR, Aboudehen KS, Carruth AK, Durand RT, Acevedo EO, Hebert EP, Johnson LG, Castracane VD (2003) Adiponectin responses to continuous and progressively intense intermittent exercise. Med Sci Sports Exerc 35:1320–1325PubMedCrossRefGoogle Scholar
  16. Lee LL, Watson MC, Mulvaney CA, Tsai CC, Lo SF (2010) The effect of walking intervention on blood pressure control: A systematic review. Int J Nurs Stud 47:1545–1561Google Scholar
  17. Li Q, Morimoto K, Nakadai A, Inagaki H, Katsumata M, Shimizu T, Hirata Y, Hirata K, Suzuki H, Miyazaki Y, Kagawa T, Koyama Y, Ohira T, Takayama N, Krensky AM, Kawada T (2007a) Forest bathing enhances human natural killer activity and expression of anti-cancer proteins. Int J Immunopathol Pharmacol 20(S2):3–8PubMedGoogle Scholar
  18. Li Q, Morimoto K, Nakadai A, Qu T, Matsushima H, Katsumata M, Shimizu T, Inagaki H, Hirata Y, Hirata K, Kawada T, Lu Y, Nakayama K, Krensky AM (2007b) Healthy lifestyles are associated with higher levels of perforin, granulysin and granzymes A/B-expressing cells in peripheral blood lymphocytes. Prev Med 44:117–123PubMedCrossRefGoogle Scholar
  19. Li Q, Morimoto K, Kobayashi M, Inagaki H, Katsumata M, Hirata Y, Hirata K, Suzuki H, Li YJ, Wakayama Y, Kawada T, Park BJ, Ohira T, Matsui N, Kagawa T, Miyazaki Y, Krensky AM (2008a) Visiting a forest, but not a city, increases human natural killer activity and expression of anti-cancer proteins. Int J Immunopathol Pharmacol 21:117–128PubMedGoogle Scholar
  20. Li Q, Morimoto K, Kobayashi M, Inagaki H, Katsumata M, Hirata Y, Hirata K, Shimizu T, Li YJ, Wakayama Y, Kawada T, Ohira T, Takayama N, Kagawa T, Miyazaki Y (2008b) A forest bathing trip increases human natural killer activity and expression of anti-cancer proteins in female subjects. J Biol Regul Homeost Agents 22:45–55PubMedGoogle Scholar
  21. Li Q, Kobayashi M, Kawada T (2008c) Relationships between percentage of forest coverage and standardized mortality ratios (SMR) of cancers in all prefectures in Japan. Open Public Health J 1:1–7CrossRefGoogle Scholar
  22. Li Q, Kobayashi M, Wakayama Y, Inagaki H, Katsumata M, Hirata Y, Hirata K, Shimizu T, Kawada T, Ohira T, Park BJ, Kagawa T, Miyazaki Y (2009) Effect of phytoncide from trees on human natural killer function. Int J Immunopathol Pharmacol 22:951–959PubMedGoogle Scholar
  23. Li Q, Kobayashi M, Inagaki H, Hirata Y, Hirata K, Li YJ, Shimizu T, Suzuki H, Wakayama Y, Katsumata M, Kawada T, Ohira T, Matsui N, Kagawa T (2010) A day trip to a forest park increases human natural killer activity and the expression of anti-cancer proteins in male subjects. J Biol Regul Homeost Agents 24:157–165PubMedGoogle Scholar
  24. Lippi G, Salvagno GL, Montagnana M, Schena F, Ballestrieri F, Guidi GC (2006) Influence of physical exercise and relationship with biochemical variables of NT-pro-brain natriuretic peptide and ischemia modified albumin. Clin Chim Acta 367:175–180PubMedCrossRefGoogle Scholar
  25. Maria Sarullo F, Gristina T, Brusca I, Milia S, Raimondi R, Sajeva M, Maria La Chiusa S, Serio G, Paterna S, Di Pasquale P, Castello A (2006) Effect of physical training on exercise capacity, gas exchange and N-terminal pro-brain natriuretic peptide levels in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil 13:812–817PubMedCrossRefGoogle Scholar
  26. Mena-Martín FJ, Martín-Escudero JC, Simal-Blanco F, Carretero-Ares JL, Arzúa-Mouronte D, Castrodeza Sanz JJ, Hortega Study Investigators (2006) Influence of sympathetic activity on blood pressure and vascular damage evaluated by means of urinary albumin excretion. J Clin Hypertens (Greenwich) 8:619–624Google Scholar
  27. Numao S, Suzuki M, Matsuo T, Nomata Y, Nakata Y, Tanaka K (2008) Effects of acute aerobic exercise on high-molecular-weight adiponectin. Med Sci Sports Exerc 40:1271–1276PubMedCrossRefGoogle Scholar
  28. Park BJ, Tsunetsugu Y, Kasetani T, Kagawa T, Miyazaki Y (2010) The physiological effects of Shinrin-yoku (taking in the forest atmosphere or forest bathing): evidence from field experiments in 24 forests across Japan. Environ Health Prev Med 15:18–26PubMedCrossRefGoogle Scholar
  29. Scott JM, Esch BT, Shave R, Warburton DE, Gaze D, George K (2009) Cardiovascular consequences of completing a 160-km ultramarathon. Med Sci Sports Exerc 41:26–34PubMedGoogle Scholar
  30. Seino Y, Ogawa A, Yamashita T, Fukushima M, Ogata K, Fukumoto H, Takano T (2004) Application of NT-proBNP and BNP measurements in cardiac care: a more discerning marker for the detection and evaluation of heart failure. Eur J Heart Fail 6:295–300PubMedCrossRefGoogle Scholar
  31. Simpson KA, Singh MA (2008) Effects of exercise on adiponectin: a systematic review. Obesity 16:241–256PubMedCrossRefGoogle Scholar
  32. Tremblay M, Copeland J, Van Helder W (2004) Effect of training status and exercise mode on endogenous steroid hormones in men. J Appl Physiol 96:531–539PubMedCrossRefGoogle Scholar
  33. Tsai YM, Chou SW, Lin YC, Hou CW, Hung KC, Kung HW, Lin TW, Chen SM, Lin CY, Kuo CH (2006) Effect of resistance exercise on dehydroepiandrosterone sulfate concentrations during a 72-h recovery: relation to glucose tolerance and insulin response. Life Sci 79:1281–1286PubMedCrossRefGoogle Scholar
  34. Vogel T, Brechat PH, Leprêtre PM, Kaltenbach G, Berthel M, Lonsdorfer J (2009) Health benefits of physical activity in older patients: a review. Int J Clin Pract 63:303–320PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Qing Li
    • 1
  • Toshiaki Otsuka
    • 1
  • Maiko Kobayashi
    • 1
  • Yoko Wakayama
    • 1
  • Hirofumi Inagaki
    • 1
  • Masao Katsumata
    • 1
  • Yukiyo Hirata
    • 1
  • YingJi Li
    • 1
  • Kimiko Hirata
    • 1
  • Takako Shimizu
    • 1
  • Hiroko Suzuki
    • 1
  • Tomoyuki Kawada
    • 1
  • Takahide Kagawa
    • 2
  1. 1.Department of Hygiene and Public HealthNippon Medical SchoolTokyoJapan
  2. 2.Forestry and Forest Products Research InstituteTsukubaJapan

Personalised recommendations