Skip to main content
Log in

Diurnal variation in the salivary melatonin responses to exercise: relation to exercise-mediated tachycardia

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Salivary melatonin concentration is an established marker of human circadian rhythmicity. It is thought that melatonin is relatively robust to the masking effects of exercise. Nevertheless, the extent and even the direction of exercise-related change is unclear, possibly due to between-study differences in the time of day exercise is completed. Therefore, we aimed to compare melatonin responses between morning and afternoon exercise, and explore the relationships between exercise-related changes in melatonin and heart rate. At 08:00 and 17:00 hours, seven male subjects (mean ± SD age, 27 ± 5 years) completed 30 min of cycling at 70% peak oxygen uptake followed by 30 min of rest. Light intensity was maintained at ~150 lx. Salivary melatonin (ELISA) and heart rate were measured at baseline, 15 min during exercise, immediately post-exercise and following 30 min recovery. Melatonin was ≈15 pg ml−1 higher in the morning trials compared with the afternoon (P = 0.030). The exercise-related increase in melatonin was more pronounced (P = 0.024) in the morning (11.1 ± 8.7 pg ml−1) than in the afternoon (5.1 ± 5.7 pg ml−1). The slope of the heart rate–melatonin relationship was significantly (P = 0.020) steeper in the morning (0.12 pg ml−1 beats−1 min−1) than in the afternoon (0.03 pg ml−1 beats−1 min−1). In conclusion, we report for the first time that the masking effect of moderate-intensity exercise on melatonin is approximately twice as high in the morning than the afternoon. The much steeper relationship between heart rate and melatonin changes in the morning raises the possibility that time of day alters the relationships between exercise-mediated sympathetic nervous activity and melatonin secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldemir H, Atkinson G, Cable T, Edwards B, Waterhouse J, Reilly T (2000) A comparison of the immediate effects of moderate exercise in the late morning and late afternoon on core temperature and cutaneous thermoregulatory mechanisms. Chronobiol Int 17:197–207

    Article  PubMed  CAS  Google Scholar 

  • Arangino S, Cagnacci A, Angiolucci M, Vacca AM, Longu G, Volpe A, Melis GB (1999) Effects of melatonin on vascular reactivity, catecholamine levels, and blood pressure in healthy men. Am J Cardiol 83:1417–1419

    Article  PubMed  CAS  Google Scholar 

  • Arendt J (1998) Complex effects of melatonin. Therapie 53:479–488

    PubMed  CAS  Google Scholar 

  • Arendt J (2005) Melatonin: characteristics, concerns, and prospects. J Biol Rhythms 20:291–303

    Article  PubMed  CAS  Google Scholar 

  • Arendt J, Bojkowski C, Folkard S, Franey C, Marks V, Minors D, Waterhouse J, Wever RA, Wildgruber C, Wright J (1985) Some effects of melatonin and the control of its secretion in humans. Ciba Found Symp 117:266–283

    PubMed  CAS  Google Scholar 

  • Atkinson G, Drust B, Reilly T, Waterhouse J (2003) The relevance of melatonin to sports medicine and science. Sports Med 33:809–831

    Article  PubMed  Google Scholar 

  • Atkinson G, Holder A, Robertson C, Gant N, Drust B, Reilly T, Waterhouse J (2005a) Effects of melatonin on the thermoregulatory responses to intermittent exercise. J Pineal Res 39:353–359

    Article  PubMed  CAS  Google Scholar 

  • Atkinson G, Jones H, Edwards BJ, Waterhouse JM (2005b) Effects of daytime ingestion of melatonin on short-term athletic performance. Ergonomics 48:1512–1522

    Article  PubMed  CAS  Google Scholar 

  • Atkinson G, Edwards B, Reilly T, Waterhouse J (2007) Exercise as a synchroniser of human circadian rhythms: an update and discussion of the methodological problems. Eur J Appl Physiol 99:331–341

    Article  PubMed  Google Scholar 

  • Atkinson G, Jones H, Ainslie PN (2010) Circadian variation in the circulatory responses to exercise: relevance to the morning peaks in strokes and cardiac events. Eur J Appl Physiol 108:15–29

    Article  PubMed  Google Scholar 

  • Atkinson G, Batterham AM, Jones H, Taylor CE, Willie CK, Tzeng YC (2011) Appropriate within-subjects statistical models for the analysis of baroreflex sensitivity. Clin Physiol Funct Imaging 31(1):80–82

    Article  PubMed  Google Scholar 

  • Bland JM, Altman DG (1995) Calculating correlation coefficients with repeated observations: Part 1—correlation within subjects. BMJ 310:446

    PubMed  CAS  Google Scholar 

  • Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381

    PubMed  CAS  Google Scholar 

  • Burgess HJ, Fogg LF (2008) Individual differences in the amount and timing of salivary melatonin secretion. PLoS One 3:e3055

    Article  PubMed  Google Scholar 

  • Buxton OM, Frank SA, L’Hermite-Baleriaux M, Leproult R, Turek FW, Van Cauter E (1997a) Roles of intensity and duration of nocturnal exercise in causing phase delays of human circadian rhythms. Am J Physiol 273:E536–E542

    PubMed  CAS  Google Scholar 

  • Buxton OM, L’Hermite-Baleriaux M, Hirschfeld U, Cauter E (1997b) Acute and delayed effects of exercise on human melatonin secretion. J Biol Rhythms 12:568–574

    Article  PubMed  CAS  Google Scholar 

  • Carr DB, Reppert SM, Bullen B, Skrinar G, Beitins I, Arnold M, Rosenblatt M, Martin JB, McArthur JW (1981) Plasma melatonin increases during exercise in women. J Clin Endocrinol Metab 53:224–225

    PubMed  CAS  Google Scholar 

  • Christensen NJ, Galbo H (1983) Sympathetic nervous activity during exercise. Annu Rev Physiol 45:139–153

    Article  PubMed  CAS  Google Scholar 

  • Elias AN, Wilson AF, Pandian MR, Rojas FJ, Kayaleh R, Stone SC, James N (1993) Melatonin and gonadotropin secretion after acute exercise in physically active males. Eur J Appl Physiol Occup Physiol 66:357–361

    Article  PubMed  CAS  Google Scholar 

  • Harris AS, Burgess HJ, Dawson D (2001) The effects of daytime exogenous melatonin administration on cardiac autonomic activity. J Pineal Res 31:199–205

    Article  PubMed  CAS  Google Scholar 

  • Hughes RJ, Badia P (1997) Sleep-promoting and hypothermic effects of daytime melatonin administration in humans. Sleep 20:124–131

    PubMed  CAS  Google Scholar 

  • Konarska A, Karolkiewicz J, Kasprzak Z, Pilaczynska-Szczesniak L (2006) Changes in melatonin concentration after physical exercise of variable intensity. Stud Phys Cult Tour 13:45–50

    Google Scholar 

  • Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP (1980) Light suppresses melatonin secretion in humans. Science 210:1267–1269

    Article  PubMed  CAS  Google Scholar 

  • Lewy AJ, Cutler NL, Sack RL (1999) The endogenous melatonin profile as a marker for circadian phase position. J Biol Rhythms 14:227–236

    Article  PubMed  CAS  Google Scholar 

  • Linsell CR, Lightman SL, Mullen PE, Brown MJ, Causon RC (1985) Circadian rhythms of epinephrine and norepinephrine in man. J Clin Endocrinol Metab 60:1210–1215

    Article  PubMed  CAS  Google Scholar 

  • Lucia A, Diaz B, Hoyos J, Fernandez C, Villa G, Bandres F, Chicharro JL (2001) Hormone levels of world class cyclists during the Tour of Spain stage race. Br J Sports Med 35:424–430

    Article  PubMed  CAS  Google Scholar 

  • Marfell-Jones M, Olds T, Stewart A, Carter L (2006) International standards for anthropometric assessment ISAK, Potchefstroom, South Africa

  • Mistlberger RE, Skene DJ (2005) Nonphotic entrainment in humans? J Biol Rhythms 20:339–352

    Article  PubMed  Google Scholar 

  • Monteleone P, Maj M, Fusco M, Orazzo C, Kemali D (1990) Physical exercise at night blunts the nocturnal increase of plasma melatonin levels in healthy humans. Life Sci 47:1989–1995

    Article  PubMed  CAS  Google Scholar 

  • Nathan PJ, Jeyaseelan AS, Burrows GD, Norman TR (1998) Modulation of plasma melatonin concentrations by changes in posture. J Pineal Res 24:219–223

    Article  PubMed  CAS  Google Scholar 

  • Pandi-Perumal SR, Smits M, Spence W, Srinivasan V, Cardinali DP, Lowe AD, Kayumov L (2007) Dim light melatonin onset (DLMO): a tool for the analysis of circadian phase in human sleep and chronobiological disorders. Prog Neuropsychopharmacol Biol Psychiatry 31:1–11

    Article  PubMed  CAS  Google Scholar 

  • Panza JA, Epstein SE, Quyyumi AA (1991) Circadian variation in vascular tone and its relation to alpha-sympathetic vasoconstrictor activity. N Engl J Med 325:986–990

    Article  PubMed  CAS  Google Scholar 

  • Reilly T, Brooks RA (1982) Investigation of circadian rhythms in metabolic responses to exercise. Ergonomics 25:1093–1107

    Article  PubMed  CAS  Google Scholar 

  • Ronkainen H, Vakkuri O, Kauppila A (1986) Effects of physical exercise on the serum concentration of melatonin in female runners. Acta Obstet Gynecol Scand 65:827–829

    Article  PubMed  CAS  Google Scholar 

  • Skrinar GS, Bullen BA, Reppert SM, Peachey SE, Turnbull BA, McArthur JW (1989) Melatonin response to exercise training in women. J Pineal Res 7:185–194

    Article  PubMed  CAS  Google Scholar 

  • Theron JJ, Oosthuizen JM, Rautenbach MM (1984) Effect of physical exercise on plasma melatonin levels in normal volunteers. S Afr Med J 66:838–841

    PubMed  CAS  Google Scholar 

  • Touitou Y, Smolensky MH, Portaluppi F (2006) Ethics, standards, and procedures of animal and human chronobiology research. Chronobiol Int 23:1083–1096

    Article  PubMed  Google Scholar 

  • Vaughan GM, Reiter RJ (1987) The Syrian hamster pineal gland responds to isoproterenol in vivo at night. Endocrinology 120:1682–1684

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse J, Folkard S, Van Dongen H, Minors D, Owens D, Kerkhof G, Weinert D, Nevill A, Macdonald I, Sytnik N, Tucker P (2001) Temperature profiles, and the effect of sleep on them, in relation to morningness–eveningness in healthy female subjects. Chronobiol Int 18:227–247

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse J, Drust B, Weinert D, Edwards B, Gregson W, Atkinson G, Kao S, Aizawa S, Reilly T (2005) The circadian rhythm of core temperature: origin and some implications for exercise performance. Chronobiol Int 22:207–225

    Article  PubMed  Google Scholar 

  • Wurtman RJ (1985) Melatonin as a hormone in humans: a history. Yale J Biol Med 58:547–552

    PubMed  CAS  Google Scholar 

  • Zeitzer JM, Dijk DJ, Kronauer R, Brown E, Czeisler C (2000) Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J Physiol 526(Pt 3):695–702

    PubMed  CAS  Google Scholar 

  • Zhdanova IV, Wurtman RJ (1997) Efficacy of melatonin as a sleep-promoting agent. J Biol Rhythms 12:644–650

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Marrin.

Additional information

Communicated by Susan A. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrin, K., Drust, B., Gregson, W. et al. Diurnal variation in the salivary melatonin responses to exercise: relation to exercise-mediated tachycardia. Eur J Appl Physiol 111, 2707–2714 (2011). https://doi.org/10.1007/s00421-011-1890-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1890-7

Keywords

Navigation