Skip to main content

Advertisement

Log in

Effects of dynamic exercise and its intensity on ocular blood flow in humans

European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Visual performance is impaired when the ocular blood flow decreases, indicating that ocular blood flow plays a role in maintaining visual performance during exercise. We examined the ocular blood flow response to incremental cycling exercise to test the hypothesis that ocular blood flow is relatively stable during dynamic exercise because of its autoregulatory nature. The blood flow in the inferior and superior temporal retinal arterioles (ITRA and STRA, respectively) and retinal and choroidal vessels (RCV), mean arterial pressure, and heart rate (HR) were measured at rest and during leg cycling in nine young and healthy subjects (26 ± 5 years, mean ± SD). Ocular blood flow was measured by laser speckle flowmetry. The exercise intensity was incremented by 30 W every 3 min until the subject was unable to maintain a position appropriate for measuring ocular blood flow. Blood flow data obtained during cycling exercise were categorized based on HR as follows: <100, 100–120, and >120 bpm. Blood flow in the RCV increased with the exercise intensity: by 16 ± 8, 32 ± 13, and 40 ± 19% from baseline, respectively. However, blood flow and vascular conductance in the ITRA and STRA did not change significantly with exercise. These findings demonstrate for the first time that ocular blood flow increases in the retina and choroid, but not in the arterioles, with increasing exercise intensity during dynamic exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Bill A (1975) Blood circulation and fluid dynamics in the eye. Physiol Rev 55:383–417

    PubMed  CAS  Google Scholar 

  • Bill A, Sperber GO (1990) Control of retinal and choroidal blood flow. Eye 4:319–325

    Article  PubMed  Google Scholar 

  • Delaey C, Van de Voorde J (2000) Regulatory mechanisms in the retinal and choroidal circulation. Opthalmic Res 32:249–256

    Article  CAS  Google Scholar 

  • Forcier P, Kergoat H, Lovasik JV (1998) Macular hemodynamic responses to short-term acute exercise in young healthy adults. Vision Res 38:181–186

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Nohira K, Yamamoto Y, Ikawa H, Ohura T (1987) Evaluation of blood flow by laser speckle image sensing. Part 1. Appl Opt 26:5321–5325

    Article  PubMed  CAS  Google Scholar 

  • Glucksberg MR, Dunn R (1993) Direct measurement of retinal microvascular pressures in the live, anesthetized cat. Microvasc Res 45:158–165

    Article  PubMed  CAS  Google Scholar 

  • Harris A, Arend O, Bohnke K, Kroepfl E, Danis R, Martin B (1996) Retinal blood flow during dynamic exercise. Graefes Arch Clin Exp Ophthalmol 234:440–444

    Article  PubMed  CAS  Google Scholar 

  • Hayashi N, Ikemura T, Someya N (2010) Effects of hyper- and hypocapnea on choroidal and retinal blood flows and the visual acuity. FASEB J 24, 625.17

  • Hedreville M, Connes P, Romana M, Magnaval G, David T, Hardy-Dessources MD, Belloy MS, Etienne-Julan M, Hue O (2009) Central retinal vein occlusion in a sickle cell trait carrier after a cycling race. Med Sci Sports Exerc 41:14–18

    PubMed  Google Scholar 

  • Huber KK, Adams H, Remky A, Arend KO (2006) Retrobulbar haemodynamics and contrast sensitivity improvements after CO2 breathing. Acta Ophthalmol Scand 84:481–487

    Article  PubMed  Google Scholar 

  • Iester M, Torre PG, Bricola G, Bagnis A, Calabria G (2007) Retinal blood flow autoregulation after dynamic exercise in healthy young subjects. Ophthalmologica 221:180–185

    Article  PubMed  Google Scholar 

  • Johnson RL, Heigenhauser GJF, Hsia CC, Jones NL, Wagner PD (1996) Determinants of gas exchange and acid–base balance during exercise. In: Rowell LB, Shepherd JT (eds) Handbook of physiology. Oxford University Press, New York, pp 515–584

    Google Scholar 

  • Joyner MJ, Proctor DN (1999) Muscle blood flow during exercise: the limits of reductionism. Med Sci Sports Exerc 31:1036–1040

    Article  PubMed  CAS  Google Scholar 

  • Kisilevsky M, Mardimae A, Slessarev M, Han J, Fisher J, Hudson C (2008) Retinal arteriolar and middle cerebral artery responses to combined hypercarbic/hyperoxic stimuli. Invest Ophthalmol Vis Sci 49:5503–5509

    Article  PubMed  Google Scholar 

  • Koskela PU (1988) Jogging and contrast sensitivity. Acta Ophthalmol 66:725–727

    CAS  Google Scholar 

  • Koskela PU, Airaksinen PJ, Tuulonen A (1990) The effect of jogging on visual field indices. Acta Ophthalmol 68:91–93

    CAS  Google Scholar 

  • Lovasik JV, Kergoat H, Riva CE, Petrig BL, Geiser M (2003) Choroidal blood flow during exercise-induced changes in the ocular perfusion pressure. Invest Ophthalmol Vis Sci 44:2126–2132

    Article  PubMed  Google Scholar 

  • Luksch A, Garhöfer G, Imhof A, Polak K, Polska E, Dorner GT, Anzenhofer S, Wolzt M, Schmetterer L (2002) Effect of inhalation of different mixtures of O2 and CO2 on retinal blood flow. Br J Ophthalmol 86:1143–1147

    Article  PubMed  CAS  Google Scholar 

  • Michelson G, Groh M, Gründler A (1994) Regulation of ocular blood flow during increases of arterial blood pressure. Br J Ophthalmol 78:461–465

    Article  PubMed  CAS  Google Scholar 

  • Németh J, Knézy K, Tapasztó B, Kovács R, Harkányi Z (2002) Different autoregulation response to dynamic exercise in ophthalmic and central retinal arteries: a color Doppler study in healthy subjects. Graefes Arch Clin Exp Ophthalmol 240:835–840

    Article  PubMed  Google Scholar 

  • Netter FH (2006) Atlas of human anatomy, 4th edn. Saunders, Philadelphia

  • Okuno T, Sugiyama T, Kohyama M, Kojima S, Oku H, Ikeda T (2006) Ocular blood flow changes after dynamic exercise in humans. Eye (Lond) 20:796–800

    CAS  Google Scholar 

  • Reid RC (1999) Vision. In: Zigmond MJ, Bloom FE, Landis SC, Roberts JL, Squire LR (eds) Fundamental neuroscience. Academic Press, San Diego, p 821

    Google Scholar 

  • Risner D, Ehrlich R, Kheradiya NS, Siesky B, McCranor L, Harris A (2009) Effects of exercise on intraocular pressure and ocular blood flow: a review. J Glaucoma 18:429–436

    Article  PubMed  Google Scholar 

  • Riva CE, Grunwald JE, Sinclair SH, Petrig BL (1985) Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci 26:1124–1132

    PubMed  CAS  Google Scholar 

  • Rowell LB (1993) Human cardiovascular control. Oxford University Press, NY

  • Tamaki Y, Araie M, Kawamoto E, Eguchi S, Fujii H (1994) Non-contact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon. Invest Ophthalmol Vis Sci 35:3825–3834

    PubMed  CAS  Google Scholar 

  • Tamaki Y, Araie M, Kawamoto E, Eguchi S, Fujii H (1995) Non-contact, two-dimensional measurement of tissue circulation in the choroids and optic nerve head using laser speckle phenomenon. Exp Eye Res 60:373–384

    Article  PubMed  CAS  Google Scholar 

  • Wagner PD, Gale GE, Moon RE, Torre-Bueno JR, Stolp BW, Saltzman HA (1986) Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol 61:260–270

    PubMed  CAS  Google Scholar 

  • Williamson TH, Harris A (1994) Ocular blood flow measurement. Br J Ophthalmol 78:939–945

    Article  PubMed  CAS  Google Scholar 

  • Woods RL, Thomson WD (1995) Effects of exercise on aspects of visual function. Ophthalmic Physiol Opt 15:5–12

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for a grant from the Yamaha Motor Foundation for Sports to N.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoyuki Hayashi.

Additional information

Communicated by Keith Phillip George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, N., Ikemura, T. & Someya, N. Effects of dynamic exercise and its intensity on ocular blood flow in humans. Eur J Appl Physiol 111, 2601–2606 (2011). https://doi.org/10.1007/s00421-011-1880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1880-9

Keywords

Navigation