The effect of HMB supplementation on body composition, fitness, hormonal and inflammatory mediators in elite adolescent volleyball players: a prospective randomized, double-blind, placebo-controlled study

Abstract

The use of ergogenic nutritional supplements is becoming inseparable from competitive sports. β-Hydroxy-β-Methylbutyric acid (HMB) has recently been suggested to promote fat-free mass (FFM) and strength gains during resistance training in adults. In this prospective randomized, double-blind, placebo-controlled study, we studied the effect of HMB (3 g/day) supplementation on body composition, muscle strength, anaerobic and aerobic capacity, anabolic/catabolic hormones and inflammatory mediators in elite, national team level adolescent volleyball players (13.5–18 years, 14 males, 14 females, Tanner stage 4–5) during the first 7 weeks of the training season. HMB led to a significant greater increase in FFM by skinfold thickness (56.4 ± 10.2 to 56.3 ± 8.6 vs. 59.3 ±  11.3 to 61.6 ± 11.3 kg in the control and HMB group, respectively, p < 0.001). HMB led to a significant greater increase in both dominant and non-dominant knee flexion isokinetic force/FFM, measured at fast (180°/sec) and slow (60°/sec) angle speeds, but had no significant effect on knee extension and elbow flexion and extension. HMB led to a significant greater increase in peak and mean anaerobic power determined by the Wingate anaerobic test (peak power: 15.5 ± 1.6 to 16.2 ± 1.2 vs. 15.4 ± 1.6 to 17.2 ± 1.2 watts/FFM, mean power: 10.6 ± 0.9 to 10.8 ± 1.1 vs. 10.7 ± 0.8 to 11.8 ± 1.0 watts/FFM in control and HMB group, respectively, p < 0.01), with no effect on fatigue index. HMB had no significant effect on aerobic fitness or on anabolic (growth hormone, IGF-I, testosterone), catabolic (cortisol) and inflammatory mediators (IL-6 and IL-1 receptor antagonist). HMB supplementation was associated with greater increases in muscle mass, muscle strength and anaerobic properties with no effect on aerobic capacity suggesting some advantage for its use in elite adolescent volleyball players during the initial phases of the training season. These effects were not accompanied by hormonal and inflammatory mediator changes.

This is a preview of subscription content, access via your institution.

References

  1. Bar-Or O (1987) The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med 4:381–394

    PubMed  Article  CAS  Google Scholar 

  2. Castro-Pinero J, Artero EG, Espana-Romero V, Ortega FB, Sjostrom M, Suni J, Ruiz JR (2009) Criterion-related validity of field-based fitness tests in youth: a systematic review. Br J Sports Med 30(9):658–662

    Article  CAS  Google Scholar 

  3. Crawford PB, Obarzanek E, Morrison J, Sabry ZI (1994) Comparative advantage of 3-day food records over 24-hour recall and 5-day food frequency validated by observation of 9- and 10-year-old girls. J Am Diet Assoc 94:626–630

    PubMed  Article  CAS  Google Scholar 

  4. Decombaz J, Bury A, Hager C (2003) HMB meta-analysis and the clustering of data sources. J Appl Physiol 95:2180–2182

    PubMed  Google Scholar 

  5. Eliakim A, Nemet D, Bar-Sela S, Higer Y, Falk B (2002) Changes in circulating IGF-I and their correlation with self-assessment and fitness among elite athletes. Int J Sports Med 23:600–603

    PubMed  Article  CAS  Google Scholar 

  6. Eliakim A, Nemet D, Cooper DM (2005) Exercise, training and the GH– > IGF-I axis. In: Kraemer WJ, Rogol AD (eds) The endocrine system in sports and exercise, 1. Wiley-Blackwell, Oxford, pp 165–179

    Google Scholar 

  7. Gallagher PM, Carrithers JA, Godard MP, Schulze KE, Trappe SW (2000) Beta-hydroxy-beta-methylbutyrate ingestion, part I: effects on strength and fat free mass. Med Sci Sports Exerc 32:2109–2115

    PubMed  Article  CAS  Google Scholar 

  8. Godin G, Shephard RJ (1985) A simple method to assess exercise behavior in the community. Can J Appl Sport Sci 10:141–146

    PubMed  CAS  Google Scholar 

  9. Hoffman JR, Cooper J, Wendell M, Im J, Kang J (2004) Effects of beta-hydroxy beta-methylbutyrate on power performance and indices of muscle damage and stress during high-intensity training. J Strength Cond Res 18:747–752

    PubMed  Google Scholar 

  10. Koziris LP, Hickson RC, Chatterton RT Jr, Groseth RT, Christie JM, Goldflies DG, Unterman TG (1999) Serum levels of total and free IGF-I and IGFBP-3 are increased and maintained in long-term training. J Appl Physiol 86:1436–1442

    PubMed  CAS  Google Scholar 

  11. Kraemer WJ, Hatfield DL, Volek JS, Fragala MS, Vingren JL, Anderson JM, Spiering BA, Thomas GA, Ho JY, Quann EE, Izquierdo M, Hakkinen K, Maresh CM (2009) Effects of amino acids supplement on physiological adaptations to resistance training. Med Sci Sports Exerc 41:1111–1121

    PubMed  Article  CAS  Google Scholar 

  12. Kreider RB, Ferreira M, Wilson M, Almada AL (1999) Effects of calcium beta-hydroxy-beta-methylbutyrate (HMB) supplementation during resistance-training on markers of catabolism, body composition and strength. Int J Sports Med 20:503–509

    PubMed  Article  CAS  Google Scholar 

  13. Lamboley CR, Royer D, Dionne IJ (2007) Effects of beta-hydroxy-beta-methylbutyrate on aerobic-performance components and body composition in college students. Int J Sport Nutr Exerc Metab 17:56–69

    PubMed  CAS  Google Scholar 

  14. Molnar GE, Alexander J (1974) Development of quantitative standards for muscle strength in children. Arch Phys Med Rehabil 55:490–493

    PubMed  CAS  Google Scholar 

  15. Nemet D, Eliakim A (2007) Protein and amino acid supplementation in sport. Int SportMed J 8:11–23

    Google Scholar 

  16. Nemet D, Connolly PH, Pontello-Pescatello AM, Rose-Gottron C, Larson JK, Galassetti P, Cooper DM (2004a) Negative energy balance plays a major role in the IGF-I response to exercise training. J Appl Physiol 96:276–282

    PubMed  Article  CAS  Google Scholar 

  17. Nemet D, Pontello AM, Rose-Gottron C, Cooper DM (2004b) Cytokines and growth factors during and after a wrestling season in adolescent boys. Med Sci Sports Exerc 36:794–800

    PubMed  Article  CAS  Google Scholar 

  18. Nemet D, Wolach B, Eliakim A (2005) Proteins and amino acid supplementation in sports: are they truly necessary? Isr Med Assoc J 7:328–332

    PubMed  CAS  Google Scholar 

  19. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC Jr, Connelly AS, Abumrad N (1996) Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol 81:2095–2104

    PubMed  CAS  Google Scholar 

  20. Rowlands DS, Thomson JS (2009) Effects of beta-hydroxy-beta-methylbutyrate supplementation during resistance training on strength, body composition, and muscle damage in trained and untrained young men: a meta-analysis. J Strength Cond Res 23:836–846

    PubMed  Article  Google Scholar 

  21. Slater GJ, Jenkins D (2000) Beta-hydroxy-beta-methylbutyrate (HMB) supplementation and the promotion of muscle growth and strength. Sports Med 30:105–116

    PubMed  Article  CAS  Google Scholar 

  22. Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, Bemben DA (1988) Skinfold equations for estimation of body fatness in children and youth. Hum Biol 60:709–723

    PubMed  CAS  Google Scholar 

  23. St Clair GA, Broomhead S, Lambert MI, Hawley JA (1998) Prediction of maximal oxygen uptake from a 20-m shuttle run as measured directly in runners and squash players. J Sports Sci 16:331–335

    Article  Google Scholar 

  24. Thomson JS, Watson PE, Rowlands DS (2009) Effects of nine weeks of beta-hydroxy-beta-methylbutyrate supplementation on strength and body composition in resistance trained men. J Strength Cond Res 23:827–835

    PubMed  Article  Google Scholar 

  25. Vukovich MD, Dreifort GD (2001) Effect of beta-hydroxy beta-methylbutyrate on the onset of blood lactate accumulation and V(O)(2) peak in endurance-trained cyclists. J Strength Cond Res 15:491–497

    PubMed  CAS  Google Scholar 

  26. Wilson GJ, Wilson JM, Manninen AH (2008) Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: a review. Nutr Metab (Lond) 5:1

    Article  Google Scholar 

  27. Zanchi NE, Gerlinger-Romero F, Guimaraes-Ferreira L, de Siqueira Filho MA, Felitti V, Lira FS, Seelaender M, Lancha AH, Jr (2010) HMB supplementation: clinical and athletic performance-related effects and mechanisms of action. Amino Acids, Epub ahead of print

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dan Nemet.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Portal, S., Zadik, Z., Rabinowitz, J. et al. The effect of HMB supplementation on body composition, fitness, hormonal and inflammatory mediators in elite adolescent volleyball players: a prospective randomized, double-blind, placebo-controlled study. Eur J Appl Physiol 111, 2261–2269 (2011). https://doi.org/10.1007/s00421-011-1855-x

Download citation

Keywords

  • Supplements
  • Youth
  • Athletes
  • Cytokines
  • Growth