Effect of caffeine ingestion after creatine supplementation on intermittent high-intensity sprint performance

Abstract

The aim of this study was to investigate the effects of acute caffeine ingestion on intermittent high-intensity sprint performance after 5 days of creatine loading. After completing a control trial (no ergogenic aids, CON), twelve physically active men were administered in a double-blind, randomized crossover protocol to receive CRE + PLA (0.3 g kg−1 day−1 of creatine for 5 days then followed by 6 mg kg−1 of placebo) and CRE + CAF (0.3 g kg−1 day−1 of creatine for 5 days and followed by 6 mg kg−1 of caffeine), after which they performed a repeated sprint test. Each test consisted of six 10-s intermittent high-intensity sprints on a cycling ergometer, with 60-s rest intervals between sprints. Mean power, peak power, rating of perceived exertion (RPE), and heart rates were measured during the test. Blood samples for lactate, glucose, and catecholamine concentrations were drawn at specified intervals. The mean and peak power observed in the CRE + CAF were significantly higher than those found in the CON during Sprints 1 and 3; and the CRE + CAF showed significantly higher mean and peak power than that in the CRE + PLA during Sprints 1 and 2. The mean and peak power during Sprint 3 in the CRE + PLA was significantly greater than that in the CON. Heart rates, plasma lactate, and glucose increased significantly with CRE + CAF during most sprints. No significant differences were observed in the RPE among the three trials. The present study determined that caffeine ingestion after creatine supplements augmented intermittent high-intensity sprint performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Anselme F, Collomp K, Mercier B, Ahmaidi S, Ch Prefaut (1992) Caffeine increases maximal anaerobic power and blood lactate concentration. Eur J Appl Physiol Occup Physiol 65:188–191

    PubMed  Article  CAS  Google Scholar 

  2. Balsom PD, Soderlund K, Sjodin B, Ekblom B (1995) Skeletal muscle metabolism during short duration high-intensity exercise: influence of creatine supplementation. Acta Physiol Scand 154:303–310

    PubMed  Article  CAS  Google Scholar 

  3. Bell DG, Jacobs I, Zamecnik J (1998) Effects of caffeine, ephedrine and their combination on time to exhaustion during high-intensity exercise. Eur J Appl Physiol Occup Physiol 77:427–433

    PubMed  Article  CAS  Google Scholar 

  4. Bemben MG, Lamont HS (2005) Creatine supplementation and exercise performance: recent findings. Sports Med 35:107–125

    PubMed  Article  Google Scholar 

  5. Brosnan JT, Brosnan ME (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr 27:241–261

    PubMed  Article  CAS  Google Scholar 

  6. Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, Ziegenfuss T, Lopez H, Landis J, Antonio J (2007) International Society of Sports Nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr 4:6

    PubMed  Article  Google Scholar 

  7. Clausen T (1996) The Na+, K+ pump in skeletal muscle: quantification, regulation and functional significance. Acta Physiol Scand 156:227–235

    PubMed  Article  CAS  Google Scholar 

  8. Clausen T (2003) Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev 83:1269–1324

    PubMed  CAS  Google Scholar 

  9. Clausen T, Flatman JA (1977) The effect of catecholamines on Na+-K+ transport and membrane potential in rat soleus muscle. J Physiol Lond 270:383–414

    PubMed  CAS  Google Scholar 

  10. Collomp K, Ahmaidi S, Audran M, Chanal JL, Prefaut CH (1991) Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate test. Int J Sports Med 12:439–443

    PubMed  Article  CAS  Google Scholar 

  11. Collomp K, Ahmaidi S, Chatard JC, Audran M, Ch Prefaut (1992) Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur J Appl Physiol Occup Physiol 64:377–380

    PubMed  Article  CAS  Google Scholar 

  12. Crowe MJ, Leicht AS, Spinks WL (2006) Physiological and cognitive responses to caffeine during repeated high-intensity exercise. Int J Sport Nutr Exerc Metab 16:528–544

    PubMed  CAS  Google Scholar 

  13. Doherty M, Smith PM, Davison RC, Hughes MG (2002) Caffeine is ergogenic after supplementation of oral creatine monohydrate. Med Sci Sports Exerc 34:1785–1792

    PubMed  Article  CAS  Google Scholar 

  14. Doherty M, Smith P, Hughes M, Davison R (2004) Caffeine lowers perceptual response and increases power output during high-intensity cycling. J Sports Sci 22:637–643

    PubMed  Article  Google Scholar 

  15. Glaister M, Lockey RA, Abraham CS, Staerck A, Goodwin JE, Mclnnes G (2006) Creatine supplementation and multiple sprint running performance. J Strength Cond Res 20:273–277

    PubMed  Google Scholar 

  16. Graham TE (2001) Caffeine and exercise: metabolism, endurance and performance. Sports Med 31:785–807

    PubMed  Article  CAS  Google Scholar 

  17. Graham TE, Helge JW, MacLean DA, Kiens B, Richter EA (2000) Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. J Physiol 529:837–847

    PubMed  Article  CAS  Google Scholar 

  18. Greenhaff PL, Bodin K, Siiderlund K, Hultman E (1994) Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Physiol 266:E725–E730

    PubMed  CAS  Google Scholar 

  19. Greer F, McLean C, Graham TE (1998) Caffeine, performance, and metabolism during repeated Wingate exercise tests. J Appl Physiol 85:1502–1508

    PubMed  CAS  Google Scholar 

  20. Harris RC, Soderlund K, Hultman E (1992) Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 83:367–374

    CAS  Google Scholar 

  21. Hespel P, Op’t Eijnde B, Van Leemputte M (2002) Opposite actions of caffeine and creatine on muscle relaxation time in humans. J Appl Physiol 92:513–518

    PubMed  CAS  Google Scholar 

  22. Holloszy JO (1982) Muscle metabolism during exercise. Arch Phys Med Rehabil 63:231–234

    PubMed  CAS  Google Scholar 

  23. Hue O, Le Gallais D, Boussana A, Galy O, Chamari K, Mercier B, Prefaut C (2000) Catecholamine, blood lactate and ventilatory responses to multi-cycle-run blocks. Med Sci Sports Exerc 32:1582–1586

    PubMed  Article  CAS  Google Scholar 

  24. Hultman E, Soderlund K, Timmons JA, Cederblad G, Greenhaff PL (1996) Muscle creatine loading in men. J Appl Physiol 81:232–237

    PubMed  CAS  Google Scholar 

  25. Izquierdo M, Ibanez J, Gonzalez-Badillo JJ, Gorostiaga EM (2002) Effects of creatine supplementation on muscle power, endurance, and sprint performance. Med Sci Sports Exerc 34:332–343

    PubMed  Article  CAS  Google Scholar 

  26. Jackman M, Wendling P, Friars D, Graham TE (1996) Metabolic, catecholamine, and endurance responses to caffeine during intense exercise. J Appl Physiol 81:1658–1663

    PubMed  CAS  Google Scholar 

  27. Loike JD, Somes M, Silverstein SC (1986) Creatine uptake, metabolism, and efflux in human monocytes and macrophages. Am J Physiol Cell Physiol 251:C128–C135

    CAS  Google Scholar 

  28. McKenna MJ, Morton J, Selig SE, Snow RJ (1999) Creatine supplementation increases muscle total creatine but not maximal intermittent exercise performance. J Appl Physiol 87:2244–2252

    PubMed  CAS  Google Scholar 

  29. Ogawa Y (1994) Role of ryanodine receptors. Crit Rev Biochem Mol Biol 29:229–274

    PubMed  Article  CAS  Google Scholar 

  30. Preen D, Dawson B, Goodman C, Lawrence S, Beilby J, Ching S (2001) Effect of creatine loading on long-term sprint exercise performance and metabolism. Med Sci Sports Exerc 33:814–821

    PubMed  CAS  Google Scholar 

  31. Pulido SM, Passaquin AC, Leijendekka WJ, Challet C, Wallimann T, Ruegg UT (1998) Creatine supplementation improves intracellular Ca2+ handling and survival in mdx skeletal muscle cells. FEBS Lett 439:357–362

    PubMed  Article  CAS  Google Scholar 

  32. Raguso CA, Coggan AR, Sidossis LS, Gastaldelli A, Wolfe RR (1996) Effect of theophylline on substrate metabolism during exercise. Metabolism 45:1153–1160

    PubMed  Article  CAS  Google Scholar 

  33. Schneiker KT, Bishop D, Dawson B, Hackett LP (2006) Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes. Med Sci Sports Exerc 38:578–585

    PubMed  Article  CAS  Google Scholar 

  34. Snow RJ, Murphy RM (2001) Creatine and the creatine transporter: a review. Mol Cell Biochem 224:169–181

    PubMed  Article  CAS  Google Scholar 

  35. Spriet LL, MacLean DA, Dyck DJ, Hultman E, Cederblad G, Graham TE (1992) Caffeine ingestion and muscle metabolism during prolonged exercise in humans. Am J Physiol Endocrinol Metab 262:E891–E898

    CAS  Google Scholar 

  36. Stuart GR, Hopkins WG, Cook C, Cairns SP (2005) Multiple effects of caffeine on simulated high-intensity team-sport performance. Med Sci Sports Exerc 37:1998–2005

    PubMed  Article  CAS  Google Scholar 

  37. Sutherland EW, Rall TW (1958) Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem 232:1077–1091

    PubMed  CAS  Google Scholar 

  38. Van Soeren MH, Graham TE (1998) Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. J Appl Physiol 85:1493–1501

    PubMed  Google Scholar 

  39. Vanakoski J, Kosunen V, Meririnne E, Seppala T (1998) Creatine and caffeine in anaerobic and aerobic exercise: effects on physical performance and pharmacokinetic considerations. Int J Clin Pharmacol Ther 36:258–262

    PubMed  CAS  Google Scholar 

  40. Vandenberghe K, Gillis N, Van Leemputte M, Van Hecke P, Vanstapel F, Hespel P (1996) Caffeine counteracts the ergogenic action of muscle creatine loading. J Appl Physiol 80:452–457

    PubMed  CAS  Google Scholar 

  41. Williams JH (1991) Caffeine, neuromuscular function and high-intensity exercise performance. J Sports Med Phys Fit 31:481–489

    CAS  Google Scholar 

  42. Wright GA, Grandjean PW, Pascoe DD (2007) The effects of creatine loading on thermoregulation and intermittent sprint exercise performance in a hot humid environment. J Strength Cond Res 21:655–660

    PubMed  Google Scholar 

  43. Yquel RJ, Arsac LM, Thiaudiere E, Canioni P, Manier G (2002) Effect of creatine supplementation on phosphocreatine resynthesis, inorganic phosphate accumulation and pH during intermittent maximal exercise. J Sports Sci 20:427–437

    PubMed  Article  CAS  Google Scholar 

  44. Ziegenfuss TN, Lowery LM, Lemon PWR (1998) Acute fluid volume changes in men during three days of creatine supplementation. J Exerc Physiol online 1(3). (http://faculty.css.edu/tboone2/asep/jan13d.htm)

  45. Ziegenfuss TN, Rogers M, Lowery L, Mullins N, Mendel R, Antonio J, Lemon P (2002) Effect of creatine loading on anaerobic performance and skeletal muscle volume in NCAA Division I athletes. Nutrition 18:397–402

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all participants for their effort and dedication to the protocol. This study was supported by a research grant from National Science Council, Taiwan (NSC 97-2410-H-034-028).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ching-Feng Cheng.

Additional information

Communicated by Jean-René Lacour.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, CL., Lin, JC. & Cheng, CF. Effect of caffeine ingestion after creatine supplementation on intermittent high-intensity sprint performance. Eur J Appl Physiol 111, 1669–1677 (2011). https://doi.org/10.1007/s00421-010-1792-0

Download citation

Keywords

  • Anaerobic
  • Catecholamine
  • Ergogenic aids
  • Glycolytic metabolism
  • Repeated-sprint ability