Training in the fasted state facilitates re-activation of eEF2 activity during recovery from endurance exercise

Abstract

Nutrition is an important co-factor in exercise-induced training adaptations in muscle. We compared the effect of 6 weeks endurance training (3 days/week, 1–2 h at 75% VO2peak) in either the fasted state (F; n = 10) or in the high carbohydrate state (CHO, n = 10), on Ca2+-dependent intramyocellular signalling in young male volunteers. Subjects in CHO received a carbohydrate-rich breakfast before each training session, as well as ingested carbohydrates during exercise. Before (pretest) and after (posttest) the training period, subjects performed a 2 h constant-load exercise bout (~70% of pretest VO2peak) while ingesting carbohydrates (1 g/kg h−1). A muscle biopsy was taken from m. vastus lateralis immediately before and after the test, and after 4 h of recovery. Compared with pretest, in the posttest basal eukaryotic elongation factor 2 (eEF2) phosphorylation was elevated in CHO (P < 0.05), but not in F. In the pretest, exercise increased the degree of eEF2 phosphorylation about twofold (P < 0.05), and values returned to baseline within the 4 h recovery period in each group. However, in the posttest dephosphorylation of eEF2 was negated after recovery in CHO, but not in F. Independent of the dietary condition training enhanced the basal phosphorylation status of Phospholamban at Thr17, 5′-AMP-activated protein kinase α (AMPKα), and Acetyl CoA carboxylase β (ACCβ), and abolished the exercise-induced increase of AMPKα and ACCβ (P < 0.05). In conclusion, training in the fasted state, compared with identical training with ample carbohydrate intake, facilitates post-exercise dephosphorylation of eEF2. This may contribute to rapid re-activation of muscle protein translation following endurance exercise.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Akerstrom TCA, Birk JB, Klein DK, Erikstrup C, Plomgaard P, Pedersen BK, Wojtaszewski JF (2006) Oral glucose ingestion attenuates exercise-induced activation of 5′-AMP-activated protein kinase in human skeletal muscle. Biochem Biophys Res Commun 342:949–955

    PubMed  Article  CAS  Google Scholar 

  2. Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS, Yan Z (2005) Exercise stimulates Pgc-1a transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280:19587–19593

    PubMed  Article  CAS  Google Scholar 

  3. Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    PubMed  Article  CAS  Google Scholar 

  4. Benziane B, Burton TJ, Scanlan B, Galuska D, Canny BJ, Chibalin AV, Zierath JR, Stepto NK (2008) Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab 295:E1427–E1438

    PubMed  Article  CAS  Google Scholar 

  5. Chambers MA, Moylan JS, Smith JD, Goodyear LJ, Reid MB (2009) Stretch-stimulated glucose uptake in skeletal muscle is mediated by reactive oxygen species and p38 MAP-kinase. J Physiol 587:3363–3373

    Google Scholar 

  6. Chesley A, Heigenhauser GJ, Spriet LL (1996) Regulation of muscle glycogen phosphorylase activity following short-term endurance training. Am J Physiol Endocrinol Metab 270:E328–E335

    CAS  Google Scholar 

  7. Chin ER (2005) Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol 99:414–423

    PubMed  Article  CAS  Google Scholar 

  8. Civitarese AE, Hesselink MKC, Russell AP, Ravussin E, Schrauwen P (2005) Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes. Am J Physiol Endocrinol Metab 289:E1023–E1029

    PubMed  Article  CAS  Google Scholar 

  9. Cluberton LJ, McGee SL, Murphy RM, Hargreaves M (2005) Effect of carbohydrate ingestion on exercise-induced alterations in metabolic gene expression. J Appl Physiol 99:1359–1363

    PubMed  Article  CAS  Google Scholar 

  10. Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, Hawley JA (2006) Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 20:190–192

    PubMed  CAS  Google Scholar 

  11. Coggan AR, Coyle EF (1991) Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance. Exerc Sport Sci Rev 19:1–40

    PubMed  Article  CAS  Google Scholar 

  12. De Bock K, Richter EA, Russell AP, Eijnde BO, Derave W, Ramaekers M, Koninckx E, Leger B, Verhaeghe J, Hespel P (2005) Exercise in the fasted state facilitates fibre type-specific intramyocellular lipid breakdown and stimulates glycogen resynthesis in humans. J Physiol 564:649–660

    PubMed  Article  Google Scholar 

  13. De Bock K, Derave W, Ramaekers M, Richter EA, Hespel P (2007a) Fiber type-specific muscle glycogen sparing due to carbohydrate intake before and during exercise. J Appl Physiol 102:183–188

    PubMed  Article  Google Scholar 

  14. De Bock K, Dresselaers T, Kiens B, Richter EA, Van Hecke P, Hespel P (2007b) Evaluation of intramyocellular lipid breakdown during exercise by biochemical assay, NMR spectroscopy, and Oil Red O staining. Am J Physiol Endocrinol Metab 293:E428–E434

    PubMed  Article  Google Scholar 

  15. De Bock K, Derave W, Eijnde BO, Hesselink MKC, Koninckx E, Rose AJ, Schrauwen P, Bonen A, Richter EA, Hespel PJ (2008) Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake. J Appl Physiol 104:1045–1055

    PubMed  Article  Google Scholar 

  16. Deldique L, De Bock K, Maris M, Ramaekers M, Nielens H, Francaux M, Hespel P (2010) Increased p70s6k phosphorylation during intake of a protein–carbohydrate drink following resistance exercise in the fasted state. Eur J Appl Physiol 108:791–800

    Article  Google Scholar 

  17. Derave W, Ai H, Ihlemann J, Witters LA, Kristiansen S, Richter EA, Ploug T (2000) Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle. Diabetes 49:1281–1287

    PubMed  Article  CAS  Google Scholar 

  18. Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen BB (2006) Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol 576:613–624

    PubMed  Article  CAS  Google Scholar 

  19. Emerling BM, Platanias LC, Black E, Nebreda AR, Davis RJ, Chandel NS (2005) Mitochondrial reactive oxygen species activation of p38 mitogen-activated protein kinase is required for hypoxia signaling. Mol Cell Biol 25:4853–4862

    Google Scholar 

  20. Frosig C, Jorgensen SB, Hardie DG, Richter EA, Wojtaszewski JFP (2004) 5′-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab 286:E411–E417

    PubMed  Article  CAS  Google Scholar 

  21. Gibala MJ (2007) Protein metabolism and endurance exercise. Sports Med 37:337–340

    PubMed  Article  Google Scholar 

  22. Hansen AK, Fischer CP, Plomgaard P, Andersen JL, Saltin B, Pedersen BK (2005) Skeletal muscle adaptation: training twice every second day vs. training once daily. J Appl Physiol 98:93–99

    PubMed  Article  Google Scholar 

  23. Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG (2005) Calmodulin-dependent protein kinase kinase-[beta] is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19

    PubMed  Article  CAS  Google Scholar 

  24. Hong-Brown LQ, Brown CR, Huber DS, Lang CH (2007) Alcohol regulates eukaryotic elongation factor 2 phosphorylation via an AMP-activated protein kinase-dependent mechanism in C2C12 skeletal myocytes. J Biol Chem 282:3702–3712

    PubMed  Article  CAS  Google Scholar 

  25. Hook SS, Means AR (2001) Ca(2+)/CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Toxicol 41:471–505

    PubMed  Article  CAS  Google Scholar 

  26. Horman S, Browne GJ, Krause U, Patel JV, Vertommen D, Bertrand L, Lavoinne A, Hue L, Proud CG, Rider MH (2002) Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 12:1419–1423

    PubMed  Article  CAS  Google Scholar 

  27. Hulston CJ, Venables MC, Mann CH, Martin C, Philp A, Baar K, Jeukendrup AE (2010) Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sports Exerc 42:2046–2055

    Google Scholar 

  28. Hultman E (1995) Fuel selection, muscle fibre. Proc Nutr Soc 54:107–121

    PubMed  Article  CAS  Google Scholar 

  29. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280:29060–29066

    PubMed  Article  CAS  Google Scholar 

  30. Jackman ML, Gibala MJ, Hultman E, Graham TE (1997) Nutritional status affects branched-chain oxoacid dehydrogenase activity during exercise in humans. Am J Physiol Endocrinol Metab 272:E233–E238

    CAS  Google Scholar 

  31. Jensen TE, Rose AJ, Jorgensen SB, Brandt N, Schjerling P, Wojtaszewski JFP, Richter EA (2007) Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Am J Physiol Endocrinol Metab 292:E1308–E1317

    PubMed  Article  CAS  Google Scholar 

  32. Jorgensen SB, Richter EA, Wojtaszewski FP Jr (2006) Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol 574:17–31

    PubMed  Article  Google Scholar 

  33. Kemi OJ, Ellingsen Ï, Ceci M, Grimaldi S, Smith GL, Condorelli G, Wisl ff U (2007) Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. J Mol Cell Cardiol 43:354–361

    PubMed  Article  CAS  Google Scholar 

  34. Koopman R, Pannemans DLE, Jeukendrup AE, Gijsen AP, Senden JMG, Halliday D, Saris WHM, van Loon LJC, Wagenmakers AJM (2004) Combined ingestion of protein and carbohydrate improves protein balance during ultra-endurance exercise. Am J Physiol Endocrinol Metab 287:E712–E720

    PubMed  Article  CAS  Google Scholar 

  35. Lee-Young RS, Canny BJ, Myers DE, McConell GK (2009) AMPK activation is fiber type specific in human skeletal muscle: effects of exercise and short-term exercise training. J Appl Physiol 107:283–289

    PubMed  Article  CAS  Google Scholar 

  36. Lowry OH, Passoneau JV (1972) A flexible system of enzymatic analysis. Academic Press, New York

    Google Scholar 

  37. Lucia A, Rivero JL, Perez M, Serrano AL, Calbet JA, Santalla A, Chicarro JL (2002) Determinants of O2 kinetics at high power outputs during a ramp exercise protocol. Med Sci Sports Exerc 34:331

    Google Scholar 

  38. McConell G, Snow RJ, Proietto J, Hargreaves M (1999) Muscle metabolism during prolonged exercise in humans: influence of carbohydrate availability. J Appl Physiol 87:1083–1086

    PubMed  CAS  Google Scholar 

  39. McConell GK, Lee-Young RS, Chen ZP, Stepto NK, Huynh NN, Stephens TJ, Canny BJ, Kemp BE (2005) Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen. J Physiol 568:665–676

    PubMed  Article  CAS  Google Scholar 

  40. McConell GK, Manimmanakorn A, Lee-Young RS, Kemp BE, Linden KC, Wadley GD (2008) Differential attenuation of AMPK activation during acute exercise following exercise training or AICAR treatment. J Appl Physiol 105:1422–1427

    PubMed  Article  CAS  Google Scholar 

  41. Miranda L, Horman S, De Potter I, Hue L, Jensen J, Rider M (2008) Effects of contraction and insulin on protein synthesis, AMP-activated protein kinase and phosphorylation state of translation factors in rat skeletal muscle. Pflugers Archiv 455:1129–1140

    PubMed  Article  CAS  Google Scholar 

  42. Nielsen JN, Frosig C, Sajan MP, Miura A, Standaert ML, Graham DA, JrFP Wojtaszewski, Farese RV, Richter EA (2003) Increased atypical PKC activity in endurance-trained human skeletal muscle. Biochem Biophys Res Commun 312:1147–1153

    PubMed  Article  CAS  Google Scholar 

  43. Nybo L, Pedersen K, Christensen B, Aagaared P, Brandt N, Kiens B (2009) Impact of carbohydrate supplementation during endurance training on glycogen storage and performance. Acta Physiologica 197:117–127

    PubMed  Article  CAS  Google Scholar 

  44. Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ (1995) Proinflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270:7420–7426

    Google Scholar 

  45. Roepstorff C, Schjerling P, Vistisen B, Madsen M, Steffensen CH, Rider MH, Kiens B (2005) Regulation of oxidative enzyme activity and eukaryotic elongation factor 2 in human skeletal muscle: influence of gender and exercise. Acta Physiol Scand 184:215–224

    PubMed  Article  CAS  Google Scholar 

  46. Rose AJ, Richter EA (2009) Regulatory mechanisms of skeletal muscle protein turnover during exercise. J Appl Physiol 106:1702–1711

    PubMed  Article  CAS  Google Scholar 

  47. Rose AJ, Broholm C, Kiillerich K, Finn SG, Proud CG, Rider MH, Richter EA, Kiens B (2005) Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men. J Physiol 569:223–228

    PubMed  Article  CAS  Google Scholar 

  48. Rose AJ, Kiens B, Richter EA (2006) Ca2+/calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol 574:889–903

    PubMed  Article  CAS  Google Scholar 

  49. Rose AJ, Frosig C, Kiens B, JrFP Wojtaszewski, Richter EA (2007) Effect of endurance exercise training on Ca2+/calmodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans. J Physiol 583:785–795

    PubMed  Article  CAS  Google Scholar 

  50. Rose AJ, Alsted TJ, Jensen TE, Kobberø JB, Maarbjerg SJ, Jensen J+, Richter EA (2009) A Ca(2+)-calmodulin-eEF2K-eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions. J Physiol 587:1547–1563

    PubMed  Article  CAS  Google Scholar 

  51. Spencer MK, Yan Z, Katz A (1991) Carbohydrate supplementation attenuates IMP accumulation in human muscle during prolonged exercise. Am J Physiol Cell Physiol 261:C71–C76

    CAS  Google Scholar 

  52. Van Proeyen K, Szlufcik K, Nielens H, Pelgrim K, Deldicque L, Hesselink M, Van Veldhoven PP, Hespel P (2010) Training in the fasted state improves glucose tolerance during fat-rich diet. J Physiol 588:4289–4302

    PubMed  Article  Google Scholar 

  53. Vollestad NK, Blom PC (1985) Effect of varying exercise intensity on glycogen depletion in human muscle fibres. Acta Physiol Scand 125:395–405

    PubMed  Article  CAS  Google Scholar 

  54. Wagenmakers AJ, Beckers EJ, Brouns F, Kuipers H, Soeters PB, Van Der Vusse GJ, Saris WH (1991) Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise. Am J Physiol Endocrinol Metab 260:E883–E890

    CAS  Google Scholar 

  55. Winder WW, Wilson HA, Hardie DG, Rasmussen BB, Hutber CA, Call GB, Clayton RD, Conley LM, Yoon S, Zhou B (1997) Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. J Appl Physiol 82:219–225

    PubMed  Article  CAS  Google Scholar 

  56. Wojtaszewski JFP, MacDonald C, Nielsen JN, Hellsten Y, Hardie DG, Kemp BE, Kiens B, Richter EA (2003) Regulation of 5’AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab 284:E813–E822

    PubMed  CAS  Google Scholar 

  57. Wright DC (2007) Mechanisms of calcium-induced mitochondrial biogenesis and GLUT4 synthesis. Appl Physiol Nutr Metab 32:840–845

    PubMed  Article  CAS  Google Scholar 

  58. Wright DC, Geiger PC, Han DH, Jones TE, Holloszy JO (2007) Calcium induces increases in peroxisome proliferator-activated receptor coactivator-1a and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem 282:18793–18799

    PubMed  Article  CAS  Google Scholar 

  59. Yeo WK, Lessard SJ, Chen ZP, Garnham AP, Burke LM, Rivas DA, Kemp BE, Hawley JA (2008a) Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans. J Appl Physiol 105:1519–1526

    PubMed  Article  CAS  Google Scholar 

  60. Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA (2008b) Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol 105:1462–1470

    PubMed  Article  CAS  Google Scholar 

  61. Yu M, Stepto NK, Chibalin AV, Fryer LGD, Carling D, Krook A, Hawley JA, Zierath JR (2003) Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise. J Physiol 546:327–335

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Erik A. Richter and Adam J. Rose, Copenhagen Muscle Research Centre, Institute of Exercise and Sports Sciences, University of Copenhagen, Copenhagen, Denmark Research Centre, for researching data. Monique Ramaekers, Research Centre for Exercise and Health, Department of Biomedical Kinesiology, K.U. Leuven, is also greatly acknowledged for all efforts she has put in this study. This study was supported by grant OT/05/53 from the Katholieke Universiteit Leuven and grant G.0233.05 F from the Fund for Scientific Research-Flanders, Belgium (F.W.O.-Vlaanderen).

Conflict of interest

There is no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Hespel.

Additional information

Communicated by Martin Flueck.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Van Proeyen, K., De Bock, K. & Hespel, P. Training in the fasted state facilitates re-activation of eEF2 activity during recovery from endurance exercise. Eur J Appl Physiol 111, 1297–1305 (2011). https://doi.org/10.1007/s00421-010-1753-7

Download citation

Keywords

  • Nutritional status
  • Metabolic adaptations
  • AMP-activated protein kinase
  • Ca2+-calmodulin-dependent protein kinase
  • Eukarotic elongation factor 2