Skip to main content
Log in

Whole-body vibration attenuates the increase in leg arterial stiffness and aortic systolic blood pressure during post-exercise muscle ischemia

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Exercise with whole-body vibration (WBV) decreases brachial-ankle pulse wave velocity (baPWV), a marker of systemic arterial stiffness. To examine the effect of WBV on arterial responses, 12 young men underwent three experimental trials: (1) no-exercise control (CON), (2) static squat with WBV, and (3) static squat without WBV (no-WBV). Bilateral baPWV and femoral-ankle PWV (faPWV), carotid-femoral PWV (cfPWV), augmentation index (AIx), first (P1) and second (P2) systolic peaks, aortic systolic blood pressure (aSBP), and heart rate (HR) were assessed at rest, during 4-min post-exercise muscle ischemia (PEMI) on the left thigh, and 4-min recovery. During PEMI, right faPWV increased (P < 0.05) after no-WBV and did not change after CON and WBV. Right baPWV, P2, and aSBP increased (P < 0.05) after both exercise trials, but the increase was lower (P < 0.05) after WBV than no-WBV. The increases in cfPWV (P < 0.05), AIx (P < 0.05), P1 (P < 0.01), and HR (P < 0.05) were similar in both trials during PEMI. During recovery, right faPWV and baPWV remained similar than rest after WBV and CON, but remained elevated (P < 0.05) after no-WBV. Aortic SBP, P1, and P2 remained elevated (P < 0.05) in both exercise trials during recovery, but the levels were lower (P < 0.05) than PEMI. Left faPWV and baPWV were reduced (P < 0.05) from rest in the three trials. CfPWV, AIx, and HR returned to resting levels in both exercises. WBV prevents the increases in faPWV and attenuates the increase in baPWV and aSBP induced by post-static squat muscle ischemia due to an attenuated P2 response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Crisafulli A, Salis E, Pittau G, Lorrai L, Tocco F, Melis F, Pagliaro P, Concu A (2006) Modulation of cardiac contractility by muscle metaboreflex following efforts of different intensities in humans. Am J Physiol Heart Circ Physiol 291(6):H3035–H3042

    Article  PubMed  CAS  Google Scholar 

  • Davies TS, Frenneaux MP, Campbell RI, White MJ (2007) Human arterial responses to isometric exercise: the role of the muscle metaboreflex. Clin Sci (Lond) 112(8):441–447

    Article  Google Scholar 

  • Delecluse C, Roelants M, Verschueren S (2003) Strength increase after whole-body vibration compared with resistance training. Med Sci Sports Exerc 35(6):1033–1041

    Article  PubMed  Google Scholar 

  • DeVan AE, Anton MM, Cook JN, Neidre DB, Cortez-Cooper MY, Tanaka H (2005) Acute effects of resistance exercise on arterial compliance. J Appl Physiol 98(6):2287–2291

    Article  PubMed  Google Scholar 

  • Figueroa A, Vicil F (2010) Post-exercise aortic hemodynamic responses to low-intensity resistance exercise with and without vascular occlusion. Scand J Med Sci Sports

  • Figueroa A, Hooshmand S, Figueroa M, Bada AM (2010a) Cardiovagal baroreflex and aortic hemodynamic responses to isometric exercise and post-exercise muscle ischemia in resistance trained men. Scand J Med Sci Sports 20(2):305–309

    Article  PubMed  CAS  Google Scholar 

  • Figueroa A, Vicil F, Sanchez-Gonzalez M (2010b) Static exercise with whole-body vibration reduces post-exercise leg arterial stiffness in young men with prehypertension. Med Sci Sports Exerc 42:S90

    Google Scholar 

  • Fisher JP, Seifert T, Hartwich D, Young CN, Secher NH, Fadel PJ (2010) Autonomic control of heart rate by metabolically sensitive skeletal muscle afferents in humans. J Physiol 588(Pt 7):1117–1127

    Article  PubMed  CAS  Google Scholar 

  • Freund PR, Hobbs SF, Rowell LB (1978) Cardiovascular responses to muscle ischemia in man—dependency on muscle mass. J Appl Physiol 45(5):762–767

    PubMed  CAS  Google Scholar 

  • Geleris P, Stavrati A, Boudoulas H (2004) Effect of cold, isometric exercise, and combination of both on aortic pulse in healthy subjects. Am J Cardiol 93(2):265–267

    Article  PubMed  Google Scholar 

  • Hansen J, Thomas GD, Jacobsen TN, Victor RG (1994) Muscle metaboreflex triggers parallel sympathetic activation in exercising and resting human skeletal muscle. Am J Physiol 266(6 Pt 2):H2508–H2514

    PubMed  CAS  Google Scholar 

  • Hashimoto J, Westerhof BE, Westerhof N, Imai Y, O’Rourke MF (2008) Different role of wave reflection magnitude and timing on left ventricular mass reduction during antihypertensive treatment. J Hypertens 26(5):1017–1024

    Article  PubMed  CAS  Google Scholar 

  • Heffernan KS, Rossow L, Jae SY, Shokunbi HG, Gibson EM, Fernhall B (2006) Effect of single-leg resistance exercise on regional arterial stiffness. Eur J Appl Physiol 98(2):185–190

    Article  PubMed  Google Scholar 

  • Heffernan KS, Collier SR, Kelly EE, Jae SY, Fernhall B (2007a) Arterial stiffness and baroreflex sensitivity following bouts of aerobic and resistance exercise. Int J Sports Med 28(3):197–203

    Article  PubMed  CAS  Google Scholar 

  • Heffernan KS, Jae SY, Echols GH, Lepine NR, Fernhall B (2007b) Arterial stiffness and wave reflection following exercise in resistance-trained men. Med Sci Sports Exerc 39(5):842–848

    Article  PubMed  Google Scholar 

  • Iellamo F, Massaro M, Raimondi G, Peruzzi G, Legramante JM (1999a) Role of muscular factors in cardiorespiratory responses to static exercise: contribution of reflex mechanisms. J Appl Physiol 86(1):174–180

    PubMed  CAS  Google Scholar 

  • Iellamo F, Pizzinelli P, Massaro M, Raimondi G, Peruzzi G, Legramante JM (1999b) Muscle metaboreflex contribution to sinus node regulation during static exercise: insights from spectral analysis of heart rate variability. Circulation 100(1):27–32

    PubMed  CAS  Google Scholar 

  • Kelly RP, Millasseau SC, Ritter JM, Chowienczyk PJ (2001) Vasoactive drugs influence aortic augmentation index independently of pulse-wave velocity in healthy men. Hypertension 37(6):1429–1433

    PubMed  CAS  Google Scholar 

  • Kerschan-Schindl K, Grampp S, Henk C, Resch H, Preisinger E, Fialka-Moser V, Imhof H (2001) Whole-body vibration exercise leads to alterations in muscle blood volume. Clin Physiol 21(3):377–382

    Article  PubMed  CAS  Google Scholar 

  • Kingwell BA, Berry KL, Cameron JD, Jennings GL, Dart AM (1997) Arterial compliance increases after moderate-intensity cycling. Am J Physiol 273(5 Pt 2):H2186–H2191

    PubMed  CAS  Google Scholar 

  • Kooijman M, Thijssen DH, de Groot PC, Bleeker MW, van Kuppevelt HJ, Green DJ, Rongen GA, Smits P, Hopman MT (2008) Flow-mediated dilatation in the superficial femoral artery is nitric oxide mediated in humans. J Physiol 586(4):1137–1145

    Article  PubMed  CAS  Google Scholar 

  • Lafleche AB, Pannier BM, Laloux B, Safar ME (1998) Arterial response during cold pressor test in borderline hypertension. Am J Physiol 275(2 Pt 2):H409–H415

    PubMed  CAS  Google Scholar 

  • Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP (1985) Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation 72(6):1257–1269

    PubMed  CAS  Google Scholar 

  • Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27(21):2588–2605

    Article  PubMed  Google Scholar 

  • Lythgo N, Eser P, de Groot P, Galea M (2009) Whole-body vibration dosage alters leg blood flow. Clin Physiol Funct Imaging 29(1):53–59

    Article  PubMed  Google Scholar 

  • Machado A, Garcia-Lopez D, Gonzalez-Gallego J, Garatachea N (2009) Whole-body vibration training increases muscle strength and mass in older women: a randomized-controlled trial. Scand J Med Sci Sports 20(2):200–207

    Article  PubMed  Google Scholar 

  • Munir S, Jiang B, Guilcher A, Brett S, Redwood S, Marber M, Chowienczyk P (2008) Exercise reduces arterial pressure augmentation through vasodilation of muscular arteries in humans. Am J Physiol Heart Circ Physiol 294(4):H1645–H1650

    Article  PubMed  CAS  Google Scholar 

  • Murakami T (2002) Squatting: the hemodynamic change is induced by enhanced aortic wave reflection. Am J Hypertens 15(11):986–988

    Article  PubMed  Google Scholar 

  • Nakamura H, Okazawa T, Nagase H, Yoshida M, Ariizumi M, Okada A (1996) Change in digital blood flow with simultaneous reduction in plasma endothelin induced by hand-arm vibration. Int Arch Occup Environ Health 68(2):115–119

    Article  PubMed  CAS  Google Scholar 

  • Nichols WW, Singh BM (2002) Augmentation index as a measure of peripheral vascular disease state. Curr Opin Cardiol 17(5):543–551

    Article  PubMed  Google Scholar 

  • Nishiyasu T, Tan N, Morimoto K, Nishiyasu M, Yamaguchi Y, Murakami N (1994) Enhancement of parasympathetic cardiac activity during activation of muscle metaboreflex in humans. J Appl Physiol 77(6):2778–2783

    PubMed  CAS  Google Scholar 

  • O’Rourke MF, Pauca A, Jiang XJ (2001) Pulse wave analysis. Br J Clin Pharmacol 51(6):507–522

    Article  PubMed  Google Scholar 

  • Otsuki T, Takanami Y, Aoi W, Kawai Y, Ichikawa H, Yoshikawa T (2008) Arterial stiffness acutely decreases after whole-body vibration in humans. Acta Physiol (Oxf) 194(3):189–194

    Article  CAS  Google Scholar 

  • Pel JJ, Bagheri J, van Dam LM, van den Berg-Emons HJ, Horemans HL, Stam HJ, van der Steen J (2009) Platform accelerations of three different whole-body vibration devices and the transmission of vertical vibrations to the lower limbs. Med Eng Phys 31(8):937–944

    Article  PubMed  CAS  Google Scholar 

  • Remensnyder JP, Mitchell JH, Sarnoff SJ (1962) Functional sympatholysis during muscular activity. Observations on influence of carotid sinus on oxygen uptake. Circ Res 11:370–380

    PubMed  CAS  Google Scholar 

  • Rowell LB, O’Leary DS (1990) Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol 69(2):407–418

    PubMed  CAS  Google Scholar 

  • Rubin C, Pope M, Fritton JC, Magnusson M, Hansson T, McLeod K (2003) Transmissibility of 15-hertz to 35-hertz vibrations to the human hip and lumbar spine: determining the physiologic feasibility of delivering low-level anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of osteoporosis. Spine (Phila Pa 1976) 28(23):2621–2627

    Article  Google Scholar 

  • Sugawara J, Otsuki T, Tanabe T, Maeda S, Kuno S, Ajisaka R, Matsuda M (2003) The effects of low-intensity single-leg exercise on regional arterial stiffness. Jpn J Physiol 53(3):239–241

    Article  PubMed  Google Scholar 

  • Sugawara J, Hayashi K, Yokoi T, Cortez-Cooper MY, DeVan AE, Anton MA, Tanaka H (2005) Brachial-ankle pulse wave velocity: an index of central arterial stiffness? J Hum Hypertens 19(5):401–406

    Article  PubMed  CAS  Google Scholar 

  • Takazawa K, Tanaka N, Takeda K, Kurosu F, Ibukiyama C (1995) Underestimation of vasodilator effects of nitroglycerin by upper limb blood pressure. Hypertension 26(3):520–523

    PubMed  CAS  Google Scholar 

  • Tokizawa K, Mizuno M, Muraoka I (2006) Forearm vascular responses to combined muscle metaboreceptor activation in the upper and lower limbs in humans. Exp Physiol 91(4):723–729

    Article  PubMed  Google Scholar 

  • Wilkinson IB, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ (2000) The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol 525:263–270

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson IB, MacCallum H, Hupperetz PC, van Thoor CJ, Cockcroft JR, Webb DJ (2001) Changes in the derived central pressure waveform and pulse pressure in response to angiotensin II and noradrenaline in man. J Physiol 530:541–550

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson IB, Hall IR, MacCallum H, Mackenzie IS, McEniery CM, van der Arend BJ, Shu YE, MacKay LS, Webb DJ, Cockcroft JR (2002) Pulse-wave analysis: clinical evaluation of a noninvasive, widely applicable method for assessing endothelial function. Arterioscler Thromb Vasc Biol 22(1):147–152

    Article  PubMed  CAS  Google Scholar 

  • Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, Koji Y, Hori S, Yamamoto Y (2002) Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res 25(3):359–364

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Florence Vicil and Alexei Wong for assistance in data collection. We also thank Edzard Zeinstra and Power Plate International for providing technical assistance and the vibrating platform.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Figueroa.

Additional information

Communicated by Susan Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueroa, A., Gil, R. & Sanchez-Gonzalez, M.A. Whole-body vibration attenuates the increase in leg arterial stiffness and aortic systolic blood pressure during post-exercise muscle ischemia. Eur J Appl Physiol 111, 1261–1268 (2011). https://doi.org/10.1007/s00421-010-1746-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1746-6

Keywords

Navigation