Skip to main content

Influence of exercise on nutritional requirements

Abstract

There is no consensus on the best diet for exercise, as many variables influence it. We propose an approach that is based on the total energy expenditure of exercise and the specific macro- and micronutrients used. di Prampero quantified the impact of intensity and duration on the energy cost of exercise. This can be used to determine the total energy needs and the balance of fats and carbohydrates (CHO). There are metabolic differences between sedentary and trained persons, thus the total energy intake to prevent overfeeding of sedentary persons and underfeeding athletes is important. During submaximal sustained exercise, fat oxidation (FO) plays an important role. This role is diminished and CHO’s role increases as exercise intensity increases. At super-maximal exercise intensities, anaerobic glycolysis dominates. In the case of protein and micronutrients, specific recommendations are required. We propose that for submaximal exercise, the balance of CHO and fat favors fat for longer exercise and CHO for shorter exercise, while always maintaining the minimal requirements of each (CHO: 40% and fat: 30%). A case for higher protein (above 15%) as well as creatine supplementation for resistance exercise has been proposed. One may also consider increasing bicarbonate intake for exercise that relies on anaerobic glycolysis, whereas there appears to be little support for antioxidant supplementation. Insuring minimal levels of substrate will prevent exercise intolerance, while increasing some components may increase exercise tolerance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Andersson A, Sjodin A, Hedman A, Olsson R, Vessby B (2000) Fatty acid profile of skeletal muscle phospholipids in trained and untrained young men. Am J Physiol Endocrinol Metab 279:E744–E751

    CAS  PubMed  Google Scholar 

  • Antonutto G, Capelli C, di Prampero PE (1991) Pedalling in space as a countermeasure to microgravity deconditioning. Microgravity Quart 1:93–101

    CAS  Google Scholar 

  • Austin MA, Hokanson JE, Edwards KL (1998) Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol 81:7B–12B

    CAS  PubMed  Google Scholar 

  • Balsom PD, Soderlund K, Ekblom B (1994) Creatine in humans with special reference to creatine supplementation. Sports Med 18:268–280

    CAS  PubMed  Google Scholar 

  • Blaak EE (2000) Adrenergically stimulated fat utilization and ageing. Ann Med 32:380–382

    CAS  PubMed  Google Scholar 

  • Brosnan JT, Brosnan ME (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Ann Rev Nutr 27:241–261

    CAS  Google Scholar 

  • Brown RC, Cox CM (1998) Effects of high fat versus high carbohydrate diets on plasma lipids and lipoproteins in endurance athletes. Med Sci Sports Exerc 30:1677–1683

    CAS  PubMed  Google Scholar 

  • Burke LM (1997) Nutrition for post-exercise recovery. Aust J Sci Med Sport 29:3–10

    CAS  PubMed  Google Scholar 

  • Burke LM (2007) Sport foods and supplements. In: Burke L (ed) Practical sports nutrition. Human Kinetics, Champaign, pp 43–70

    Google Scholar 

  • Burke LM, Hawley JA, Angus DJ, Cox GR, Clark SA, Cummings NK, Desbrow B, Hargreaves M (2002) Adaptations to short-term high-fat diet persist during exercise despite high carbohydrate availability. Med Sci Sports Exerc 34:83–91

    PubMed  Google Scholar 

  • Calles-Escandon J, Goran MI, O’Connell M, Nair KS, Danforth E Jr (1996) Exercise increases fat oxidation at rest unrelated to changes in energy balance or lipolysis. Am J Physiol 270:E1009–E1014

    CAS  PubMed  Google Scholar 

  • Campbell PJ, Carlson MG, Hill JO, Nurjhan N (1992) Regulation of free fatty acid metabolism by insulin in humans: role of lipolysis and reesterification. Am J Physiol 263:E1063–E1069

    CAS  PubMed  Google Scholar 

  • Capelli C, Donatelli C, Moia C, Valier C, Rosa G, di Prampero PE (1990) Energy cost and efficiency of sculling a Venetian gondola. Eur J Appl Physiol Occ Physiol 60:175–178

    CAS  Google Scholar 

  • Capelli C, Rosa G, Butti F, Ferretti G, Veicsteinas A, di Prampero PE (1993) Energy cost and efficiency of riding aerodynamic bicycles. Eur J Appl Physiol Occ Physiol 67:144–149

    CAS  Google Scholar 

  • Capelli C, Zamparo P, Cigalotto A, Francescato MP, Soule RG, Termin B, Pendergast DR, di Prampero PE (1995) Bioenergetics and biomechanics of front crawl swimming. J Appl Physiol 78:674–679

    CAS  PubMed  Google Scholar 

  • Casey A, Mann R, Banister K, Fox J, Morris PG, Macdonald IA, Greenhaff PL (2000) Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by (13)C MRS. Am J Physiol Endocrinol Metab 278:E65–E75

    CAS  PubMed  Google Scholar 

  • Celentano F, Cortili G, di Prampero PE, Cerretelli P (1974) Mechanical aspects of rowing. J Appl Physiol 36:642–647

    CAS  PubMed  Google Scholar 

  • Cerretelli P, Shindell D, Pendergast DR, di Prampero PE, Rennie DW (1977) Oxygen uptake transients at the onset and offset of arm and leg work. Respir Physiol 30:81–97

    CAS  PubMed  Google Scholar 

  • Cerretelli P, Pendergast D, Paganelli WC, Rennie DW (1979) Effects of specific muscle training on VO2 on-response and early blood lactate. J Appl Physiol Respir Environ Exerc Physiol 47:761–769

    CAS  Google Scholar 

  • Chen MT, Kaufman LN, Spennetta T, Shrago E (1992) Effects of high fat-feeding to rats on the interrelationship of body weight, plasma insulin and fatty acyl-coenzyme A esters in liver and skeletal muscle. Metab Clin Exp 41:564–569

    CAS  PubMed  Google Scholar 

  • Coggan AR, Kohrt WM, Spina RJ, Bier DM, Holloszy JO (1990) Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. J Appl Physiol 68:990–996

    CAS  PubMed  Google Scholar 

  • Costill DL, Hargreaves M (1992) Carbohydrate nutrition and fatigue. Sports Med 13:86–92

    CAS  PubMed  Google Scholar 

  • Costill DL, Sherman WM, Fink WJ, Maresh C, Witten M, Miller JM (1981) The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. Am J Clin Nutr 34:1831–1836

    CAS  PubMed  Google Scholar 

  • Coyle EF, Jeukendrup AE, Wagenmakers AJ, Saris WH (1997) Fatty acid oxidation is directly regulated by carbohydrate metabolism during exercise. Am J Physiol 273:E268–E275

    CAS  PubMed  Google Scholar 

  • Coyle EF, Jeukendrup AE, Oseto MC, Hodgkinson BJ, Zderic TW (2001) Low-fat diet alters intramuscular substrates and reduces lipolysis and fat oxidation during exercise. Am J Physiol Endocrinol Metab 280:E391–E398

    CAS  PubMed  Google Scholar 

  • Decombaz J, Schmitt B, Ith M, Decarli B, Diem P, Kreis R, Hoppeler H, Boesch C (2001) Postexercise fat intake repletes intramyocellular lipids but no faster in trained than in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 281:R760–R769

    CAS  PubMed  Google Scholar 

  • di Prampero PE (1981) Energetics of muscular exercise. Rev Physiol Biochem Pharmacol 89:143–222

    CAS  PubMed  Google Scholar 

  • di Prampero PE (1986) The energy cost of human locomotion on land and in water. Int J Sports Med 7:55–72

    CAS  PubMed  Google Scholar 

  • di Prampero PE (2003) Factors limiting maximal performance in humans. Eur J Appl Physiol 90:420–429

    PubMed  Google Scholar 

  • di Prampero PE, Cerretelli P, Piiper J (1969) O2 consumption and metabolite balance in the dog gastrocnemius at rest and during exercise. Pflugers Archiv Eur J Physiol 309:38–47

    CAS  Google Scholar 

  • di Prampero PE, Cerretelli P, Piiper J (1970) Lactic acid formation in gastrocnemius muscle on the dog and its relation to O2 debt contraction. Respir Physiol 8:347–353

    CAS  PubMed  Google Scholar 

  • di Prampero PE, Cortili G, Mognoni P, Saibene F (1976) Energy cost of speed skating and efficiency of work against air resistance. J Appl Physiol 40:584–591

    CAS  PubMed  Google Scholar 

  • di Prampero PE, Meyer M, Cerretelli P, Piiper J (1978) Energetics of anaerobic glycolysis in dog gastrocnemius. Pflugers Archiv Eur J Appl Physiol 377:1–8

    CAS  Google Scholar 

  • di Prampero PE, Meyer M, Cerretelli P, Piiper J (1981) Energy sources and mechanical efficiency of anaerobic work in dog gastrocnemius. Pflugers Archiv Eur J Appl Physiol 389:257–262

    CAS  Google Scholar 

  • di Prampero PE, Capelli C, Pagliaro P, Antonutto G, Girardis M, Zamparo P, Soule RG (1993) Energetics of best performances in middle-distance running. J Appl Physiol 74:2318–2324

    CAS  PubMed  Google Scholar 

  • Edge J, Bishop D, Goodman C (2006) Effects of chronic NaHCO3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance. J Appl Physiol 101:918–925

    CAS  PubMed  Google Scholar 

  • Evans WJ (2001) Protein nutrition and resistance exercise. Can J Appl Physiol 26:S141–S152

    PubMed  Google Scholar 

  • Evans WJ (2004) Protein nutrition, exercise and aging. J Am Coll Nutr 23:601S–609S

    CAS  PubMed  Google Scholar 

  • Evans WJ, Cyr-Campbell D (1997) Nutrition, exercise, and healthy aging. J Am Diet Assoc 97:632–638

    CAS  PubMed  Google Scholar 

  • Feldman EB (1999) Creatine: a dietary supplement and ergogenic aid. Nutr Rev 57:45–50

    CAS  PubMed  Google Scholar 

  • Francescato MP, Talon T, di Prampero PE (1995) Energy cost and energy sources in karate. Eur J Appl Physiol Occup Physiol 71:355–361

    CAS  PubMed  Google Scholar 

  • Francescato MP, Cettolo V, di Prampero PE (2003) Relationships between mechanical power, O2 consumption, O2 deficit and high-energy phosphates during calf exercise in humans. Pflugers Archiv Eur J Physiol 445:622–628

    CAS  Google Scholar 

  • Francescato MP, Cettolo V, di Prampero PE (2008) Influence of phosphagen concentration on phosphocreatine breakdown kinetics. Data from human gastrocnemius muscle. J Appl Physiol 105:158–164

    CAS  PubMed  Google Scholar 

  • Gleeson M, Nieman DC, Pedersen BK (2004) Exercise, nutrition and immune function. J Sports Sci 22:115–122

    PubMed  Google Scholar 

  • Grossie J, Collins C, Julian M (1988) Bicarbonate and fast-twitch muscle: evidence for a major role in pH regulation. J Memb Biol 105:265–272

    CAS  Google Scholar 

  • Hawkins S, Wiswell R (2003) Rate and mechanism of maximal oxygen consumption decline with aging: implications for exercise training. Sports Med 33:877–888

    PubMed  Google Scholar 

  • Hawley JA, Palmer GS, Noakes TD (1997) Effects of 3 days of carbohydrate supplementation on muscle glycogen content and utilisation during a 1-h cycling performance. Eur J Appl Physiol Occup Physiol 75:407–412

    CAS  PubMed  Google Scholar 

  • Helge JW (2002) Long-term fat diet adaptation effects on performance, training capacity, and fat utilization. Med Sci Sports Exerc 34:1499–1504

    CAS  PubMed  Google Scholar 

  • Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Envir Exerc Physiol 56:831–838

    CAS  Google Scholar 

  • Hoppeler H, Billeter R, Horvath PJ, Leddy JJ, Pendergast DR (1999) Muscle structure with low- and high-fat diets in well-trained male runners. Int J Sports Med 20:522–526

    CAS  PubMed  Google Scholar 

  • Horvath PJ, Eagen CK, Fisher NM, Leddy JJ, Pendergast DR (2000a) The effects of varying dietary fat on performance and metabolism in trained male and female runners. J Am Coll Nutr 19:52–60

    CAS  PubMed  Google Scholar 

  • Horvath PJ, Eagen CK, Ryer-Calvin SD, Pendergast DR (2000b) The effects of varying dietary fat on the nutrient intake in male and female runners. J Am Coll Nutr 19:42–51

    CAS  PubMed  Google Scholar 

  • Hu FB, Stampfer MJ, Manson JE, Rimm E, Colditz GA, Rosner BA, Hennekens CH, Willett WC (1997) Dietary fat intake and the risk of coronary heart disease in women. N Engl J Med 337:1491–1499

    CAS  PubMed  Google Scholar 

  • Jeukendrup AE, Saris WH, Wagenmakers AJ (1998) Fat metabolism during exercise: a review—part III: effects of nutritional interventions. Int J Sports Med 19:371–379

    CAS  PubMed  Google Scholar 

  • Kiens B, Essen-Gustavsson B, Christensen NJ, Saltin B (1993) Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J Physiol 469:459–478

    CAS  PubMed  Google Scholar 

  • Kiens B, Kristiansen S, Jensen P, Richter EA, Turcotte LP (1997) Membrane associated fatty acid binding protein (FABPpm) in human skeletal muscle is increased by endurance training. Biochem Biophys Res Commun 231:463–465

    CAS  PubMed  Google Scholar 

  • Konig D, Wagner KH, Elmadfa I, Berg A (2001) Exercise and oxidative stress: significance of antioxidants with reference to inflammatory, muscular, and systemic stress. Exerc Immunol Rev 7:108–133

    CAS  PubMed  Google Scholar 

  • Koopman R, Saris WH, Wagenmakers AJ, van Loon LJ (2007) Nutritional interventions to promote post-exercise muscle protein synthesis. Sports Med 37:895–906

    PubMed  Google Scholar 

  • Kumar V, Atherton P, Smith K, Rennie MJ (2009) Human muscle protein synthesis and breakdown during and after exercise. J Appl Physiol 106:2026–2039

    CAS  PubMed  Google Scholar 

  • Lambert EV, Speechly DP, Dennis SC, Noakes TD (1994) Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high fat diet. Eur J Appl Physiol Occup Physiol 69:287–293

    CAS  PubMed  Google Scholar 

  • LaRosa JC, Hunninghake D, Bush D, Criqui MH, Getz GS, Gotto AM Jr, Grundy SM, Rakita L, Roberstson RM, Weisfeldt ML, Cleeman JI (1990) The cholesterol facts. A summary of the evidence relating dietary fats, serum cholesterol, and coronary heart disease. A joint statement by the American Heart Association and the National Heart, Lung and Blood Institute. The Task Force on Cholesterol Issues, American Heart Association. Circulation 81:1721–1733

    CAS  PubMed  Google Scholar 

  • Leddy J, Horvath P, Rowland J, Pendergast D (1997) Effect of a high or a low fat diet on cardiovascular risk factors in male and female runners. Med Sci Sports Exerc 29:17–25

    CAS  PubMed  Google Scholar 

  • Lucas M, Heiss CJ (2005) Protein needs of older adults engaged in resistance training: a review. J Aging Phys Act 13:223–236

    PubMed  Google Scholar 

  • Mackinnon LT (2000) Exercise immunology: current issues. In: Nieman DC, Pedersen BK (eds) Nutrition and exercise immunology. CRC Press, New York, pp 6–7

  • Manetta J, Brun JF, Prefaut C, Mercier J (2005) Substrate oxidation during exercise at moderate and hard intensity in middle-aged and young athletes vs sedentary men. Metab Clin Exp 54:1411–1419

    CAS  PubMed  Google Scholar 

  • Manore MM (2005) Exercise and the Institute of Medicine recommendations for nutrition. Curr Sports Med Rep 4:193–198

    PubMed  Google Scholar 

  • Margaritis I, Rousseau AS (2008) Does physical exercise modify antioxidant requirements? Nutr Res Rev 21:3–12

    CAS  PubMed  Google Scholar 

  • McNaughton L (2000) Bicarbonate and citrate. In: Maughan R (ed) Nutrition in sport. Blackwell Science, Oxford, p 393

    Google Scholar 

  • McNaughton L, Backx K, Palmer G, Strange N (1999) The effects of chronic bicarbonate ingestion on the performance of high intensity work. Eur J Appl Physiol Occup Physiol 80:333–336

    CAS  PubMed  Google Scholar 

  • Meksawan K, Pendergast DR, Leddy JJ, Mason M, Horvath PJ, Awad AB (2004) Effect of low and high fat diets on nutrient intakes and select cardiovascular risk factors in sedentary men and women. J Am Coll Nutr 23:131–140

    PubMed  Google Scholar 

  • Meksawan K, Pendergast DR, Vladutiu GD, Awad AB (2005) Effect of dietary fat intake on total body and white blood cell fat oxidation in exercised sedentary subjects. Nutr Res 25:225–237

    CAS  Google Scholar 

  • Miller BF (2007) Human muscle protein synthesis after physical activity and feeding. Exerc Sport Sci Rev 35:50–55

    PubMed  Google Scholar 

  • Minetti AE, Capelli C, Zamparo P, di Prampero PE (1995) Effects of stride frequency on mechanical power and energy expenditure of walking. Med Sci Sports Exerc 27:1194–1202

    CAS  PubMed  Google Scholar 

  • Muoio DM, Leddy JJ, Horvath PJ, Awad AB, Pendergast DR (1994) Effect of dietary fat on metabolic adjustments to maximal VO2 and endurance in runners. Med Sci Sports Exerc 26:81–88

    CAS  PubMed  Google Scholar 

  • Nieman DC (1997) Immune response to heavy exertion. J Appl Physiol 82:1385–1394

    CAS  PubMed  Google Scholar 

  • Olgiati R, Jacquet J, di Prampero PE (1986) Energy cost of walking and exertional dyspnea in multiple sclerosis. Am Rev Respir Dis 134:1005–1010

    CAS  PubMed  Google Scholar 

  • Peake JM (2003) Vitamin C: effects of exercise and requirements with training. Int J Sport Nutr Exerc Metab 13:125–151

    CAS  PubMed  Google Scholar 

  • Pendergast D, Cerretelli P, Rennie DW (1979) Aerobic and glycolytic metabolism in arm exercise. J Appl Physiol Respir Envir Exerc Physiol 47:754–760

    CAS  Google Scholar 

  • Pendergast DR, Horvath PJ, Leddy JJ, Venkatraman JT (1996a) Increasing fat intake may benefit some athletes. Nutr Notes Strength Conditioning J 18:42

    Google Scholar 

  • Pendergast DR, Horvath PJ, Leddy JJ, Venkatraman JT (1996b) The role of dietary fat on performance, metabolism and health. Am J Sports Med 24:S53–S58

    CAS  PubMed  Google Scholar 

  • Pendergast DR, Fisher NM, Meksawan K, Doubrava M, Vladutiu GD (2004) The distribution of white blood cell fat oxidation in health and disease. J Inherit Metab Dis 27:1–11

    Google Scholar 

  • Phillips SM (2006) Dietary protein for athletes: from requirements to metabolic advantage. Appl Physiol Nutr Metabol 31:647–654

    CAS  Google Scholar 

  • Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GF, Hill RE, Grant SM (1996) Effects of training duration on substrate turnover and oxidation during exercise. J Appl Physiol 81:2182–2191

    CAS  PubMed  Google Scholar 

  • Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose-fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789

    CAS  PubMed  Google Scholar 

  • Retzlaff BM, Buck BL, Walden CE, Wallick S, Knopp RH (1998) Iron and zinc status of women and men who followed cholesterol-lowering diets. J Am Diet Assoc 98:149–154

    CAS  PubMed  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265:E380–E391

    CAS  PubMed  Google Scholar 

  • Sacks FM, Katan M (2002) Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoproteins and cardiovascular disease. Am J Med 113:13S–24S

    CAS  PubMed  Google Scholar 

  • Schaefer EJ (1993) New recommendations for the diagnosis and treatment of plasma lipid abnormalities. Nutr Rev 51:246–253

    CAS  PubMed  Google Scholar 

  • Schrauwen P, van Marken Lichtenbelt WD, Saris WH, Westerterp KR (1997) Role of glycogen-lowering exercise in the change of fat oxidation in response to a high-fat diet. Am J Physiol 273:E623–E629

    CAS  PubMed  Google Scholar 

  • Sial S, Coggan AR, Carroll R, Goodwin J, Klein S (1996) Fat and carbohydrate metabolism during exercise in elderly and young subjects. Am J Physiol 271:E983–E989

    CAS  PubMed  Google Scholar 

  • Silber ML (1999) Scientific facts behind creatine monohydrate as a sport nutrition supplement. J Sports Med Phys Fit 39:179–188

    CAS  Google Scholar 

  • Solomon TP, Sistrun SN, Krishnan RK, Del Aguila LF, Marchetti CM, O’Carroll SM, O’Leary VB, Kirwan JP (2008) Exercise and diet enhance fat oxidation and reduce insulin resistance in older obese adults. J Appl Physiol 104:1313–1319

    PubMed  Google Scholar 

  • Spina RJ, Chi MM, Hopkins MG, Nemeth PM, Lowry OH, Holloszy JO (1996) Mitchondrial enzymes increase in muscle in response to 7–10 days of cycle exercise. Eur J Appl Physiol 80:2250–2254

    CAS  Google Scholar 

  • Starling RD, Trappe TA, Parcell AC, Kerr CG, Fink WJ, Costill DL (1997) Effects of diet on muscle triglyceride and endurance performance. J Appl Physiol 82:1185–1189

    CAS  PubMed  Google Scholar 

  • Tarnopolsky MA (2000) Gender differences in metabolism; nutrition and supplements. J Sci Med Sport 3:287–298

    CAS  PubMed  Google Scholar 

  • Tipton KD, Ferrando AA (2008) Improving muscle mass: response of muscle metabolism to exercise, nutrition and anabolic agents. Essays Biochem 44:85–98

    CAS  PubMed  Google Scholar 

  • Venkatraman JT, Pendergast D (1998) Effects of the level of dietary fat intake and endurance exercise on plasma cytokines in runners. Med Sci Sports Exerc 30(8):1198–1204

    CAS  PubMed  Google Scholar 

  • Venkatraman JT, Pendergast D (2001) Role of dietary fats and exercise in immune functions and aging. In: Mostofsky DI, Yehuda S, Salem N Jr (eds) Fatty acids: physiological and behavioral functions. Humana Press, Totowa, pp 79–98

    Google Scholar 

  • Venkatraman JT, Pendergast DR (2002) Effect of dietary intake on immune function in athletes. Sports Med 32:323–337

    PubMed  Google Scholar 

  • Venkatraman JT, Rowland JA, Denardin E, Horvath PJ, Pendergast D (1997) Influence of the level of dietary lipid intake and maximal exercise on the immune status in runners. Med Sci Sports Exerc 29:333–344

    CAS  PubMed  Google Scholar 

  • Venkatraman JT, Horvath PJ, Pendergast DR (2000a) Lipids, exercise, and immunology. In: Newman DC, Pedersen BK (eds) Nutrition and exercise immunology. CRC Press, New York, pp 44–74

    Google Scholar 

  • Venkatraman JT, Leddy J, Pendergast D (2000b) Dietary fats and immune status in athletes: clinical implications. Med Sci Sports Exerc 32:S389–S394

    CAS  PubMed  Google Scholar 

  • Venkatraman JT, Feng X, Pendergast D (2001) Effects of dietary fat and endurance exercise on plasma cortisol, prostaglandin E2, interferon-gamma and lipid peroxides in runners. J Am Coll Nutr 20:529–536

    CAS  PubMed  Google Scholar 

  • Vina J, Gomez-Cabrera MC, Borras C (2007) Fostering antioxidant defences: upregulation of antioxidant genes or antioxidant supplementation? Brit J Nutr 98:S36–S40

    CAS  PubMed  Google Scholar 

  • Vladutiu GD, Bennett MJ, Fisher NM, Smail D, Boriack R, Leddy JJ, Pendergast DR (2002) Phenotypic variability among first-degree relatives with carnitine palmitoyltransferase II deficiency. Muscle Nerve 26:492–498

    PubMed  Google Scholar 

  • Yamada M, Suzuki K, Kudo S, Totsuka M, Simoyama T, Nakaji S, Sugawara K (2000) Effect of exhaustive exericse on human neutrophils in atheletes. Luminescence 15:15–20

    CAS  PubMed  Google Scholar 

  • Ziegler P, Sharp R, Hughes V, Evans W, Khoo CS (2002) Nutritional status of teenage female competitive figure skaters. J Am Diet Assoc 102:374–379

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Pendergast.

Additional information

Communicated by Susan Ward.

This article is published as part of the Special Issue dedicated to Pietro di Prampero, formerly Editor-in-Chief of EJAP.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pendergast, D.R., Meksawan, K., Limprasertkul, A. et al. Influence of exercise on nutritional requirements. Eur J Appl Physiol 111, 379–390 (2011). https://doi.org/10.1007/s00421-010-1710-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1710-5

Keywords

  • Carbohydrate oxidation
  • Fat oxidation
  • Supplementation
  • Immune
  • Risk factors