Skip to main content
Log in

Acute and cumulative effects of focused high-frequency vibrations on the endocrine system and muscle strength

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 26 September 2013

Abstract

The purpose of this study was to evaluate the acute and long-term effects of local high-intensity vibration (HLV, f = 300 Hz) on muscle performance and blood hormone concentrations in healthy young men. Totally 18 subjects (cV group) were studied in two sessions, either without (control) or with HLV treatment. The protocol was the same on both control and test days, except that, in the second session, subjects underwent HLV treatment. Counter-movement jumping (CMJ), maximal isometric voluntary contraction (MVC) test, and hormonal levels were measured before the procedure, immediately thereafter, and 1 h later. To assess the long-term effects of HLV, the cV group was subjected to HLV on the leg muscles for 4 weeks, and a second group (cR group, n = 18) embarked upon a resistance training program. All subjects underwent an MVC test and an isokinetic (100 deg/s) test before training, 4 weeks after training, and 2 months after the end of training. The HLV protocol significantly increased the serum level of growth hormone (GH, P < 0.05) and creatine phosphokinase (CPK, P < 0.05), and decreased the level of cortisol (P < 0.05). None of GH, CPK or testosterone levels were altered in controls. There was a significant improvement in MVC (P < 0.05). After 4 weeks, both the cV and cR groups demonstrated significant improvement in MVC and isokinetic tests (P < 0.05). This increase persisted for at least 2 months. Our results indicate that HLV influences the levels of particular hormones and improves neuromuscular performance. Our results indicate that HLV has a long-term beneficial effect comparable to that of resistance training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K (2003) Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 89(5):555–563

    Article  PubMed  CAS  Google Scholar 

  • Baechle TR, Earle RW, Wathen D (2000) Resistance training. In: Baechle TR, Earle RW (eds) Essentials of strength training and conditioning. Human Kinetics, USA, pp 410–411

    Google Scholar 

  • Bosco C, Cardinale M, Tsarpela O (1999) Influence of vibration on mechanical power and electromyogram activity in human arm flexor muscles. Eur J Appl Physiol 79:306–311

    Article  CAS  Google Scholar 

  • Bosco C, Iacovelli M, Tsarpela O, Cardinale M, Bonifazi M, Tihanyi J, Viru M, De Lorenzo A, Viru A (2000) Hormonal responses to whole-body vibration in men. Eur J Appl Physiol 81(6):449–454

    Article  PubMed  CAS  Google Scholar 

  • Cardinale M, Bosco C (2003) The use of vibration as an exercise intervention. Exerc Sport Sci Rev 31(1):3–7

    Article  PubMed  Google Scholar 

  • Casale R, Ring H, Rainoldi A (2008) High frequency vibration conditioning stimulation centrally reduces myoelectrical manifestation of fatigue in healthy subjects. J Electromyogr Kinesiol 19(5):998–1004

    Google Scholar 

  • de Ruiter CJ, Van der Linden RM, Van der Zijden MJA, Hollander AP, De Haan A (2003a) Short term effects of whole body vibration on maximal voluntary isometric knee extensor force and rate of force rise. Eur J Appl Physiol 88:472–475

    Article  PubMed  Google Scholar 

  • de Ruiter CJ, Van Raak SM, Schilperoort JV, Hollander AP, de Haan A (2003b) The effects of 11 weeks whole body vibration training on jump height, contractile properties and activation of human knee extensors. Eur J Appl Physiol 90(5–6):595–600

    Google Scholar 

  • Dessy LA, Monarca C, Grasso F, Saggini A, Buccheri EM, Saggini R, Scuderi N (2008) The use of mechanical acoustic vibrations to improve abdominal contour. Aesthetic Plast Surg 32(2):339–345

    Article  PubMed  CAS  Google Scholar 

  • Di Loreto C, Ranchelli A, Lucidi P, Murdolo G, Parlanti N, De Cicco A, Tsarpela O, Annino G, Bosco C, Santeusanio F, Bolli GB, De Feo P (2004) Effects of whole-body vibration exercise on the endocrine system of healthy men. J Endocrinol Invest 27(4):323–327

    PubMed  CAS  Google Scholar 

  • Eklund G, Hagbarth KE (1966) Normal variability of tonic vibration reflexes in man. Exp Neurol 16:80–92

    Article  PubMed  CAS  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    PubMed  CAS  Google Scholar 

  • Issurin VB (2005) Vibrations and their applications in sport. A review. J Sports Med Phys Fitness 45(3):324–336

    PubMed  CAS  Google Scholar 

  • Issurin VB, Tenenbaum G (1999) Acute and residual effects of vibratory stimulation on explosive strength in elite and amateur athletes. J Sports Sci 17(3):177–182

    Google Scholar 

  • Issurin VB, Liebermann DG, Tenenbaum G (1994) Effect of vibratory stimulation training on maximal force and flexibility. J Sports Sci 12(6):561–566

    Article  PubMed  CAS  Google Scholar 

  • Jackson SW, Turner DL (2003) Prolonged muscle vibration reduces maximal voluntary knee extension performance in both the ipsilateral and the contralateral limb in man. Eur J Appl Physiol 88(4–5):380–386

    Article  PubMed  Google Scholar 

  • Kanaley JA, Weltman JY, Pieper KS, Weltman A, Hartman ML (2001) Cortisol and growth hormone responses to exercise at different times of day. J Clin Endocrinol Metab 86(6):2881–2889

    Article  PubMed  CAS  Google Scholar 

  • Kjaer M (1992) Regulation of hormonal and metabolic responses during exercise in humans. Exerc Sport Sci Rev 20:161–184

    PubMed  CAS  Google Scholar 

  • Komi PV, Bosco C (1978) Utilization of stored elastic energy in leg extensor muscles by men and women. Med Sci Sports 10(4):261–265

    PubMed  CAS  Google Scholar 

  • Kvorning T, Bagger M, Caserotti P, Madsen K (2006) Effects of vibration and resistance training on neuromuscular and hormonal measures. Eur J Appl Physiol 96(5):615–625

    Article  PubMed  CAS  Google Scholar 

  • Lephart SM, Henry TJ (1995) Functional rehabilitation for the upper and lower extremity. Orthop Clin North Am 26:579–592

    PubMed  CAS  Google Scholar 

  • Liu-Ambrose T, Taunton JE, MacIntyre D, McConkey P, Khan KM (2003) The effects of proprioceptive or strength training on the neuromuscular function of the ACL reconstructed knee: a randomized clinical trial. Scand J Med Sci Sports 13(2):115–123

    Article  PubMed  CAS  Google Scholar 

  • Ljubisavljevic M, Vukevic IS, Radovanovic S, Milanovic S, Anastasijevic K (1997) Effect of cutaneous afferent input on fatigue-induced changes in fusimotor activity of decerebrated cats. Neuroscience 79:935–942

    Article  PubMed  CAS  Google Scholar 

  • Matthews PB (1966a) The reflex excitation of the soleus muscle of the decerebrate cat caused by vibbration applied to its tendon. J Physiol 184(2):450–472

    PubMed  CAS  Google Scholar 

  • Matthews PB (1966b) Reflex activation of the soleus muscle of the decerebrate cat by vibration. Nature 209(5019):204–205

    Google Scholar 

  • Milner-Brown HS, Stein RB, Lee RG (1975) Synchronization of human motor units: possible roles of exercise and supraspinal reflexes. Electroencephalogr Clin Neurophysiol 38(3):245–254

    Article  PubMed  CAS  Google Scholar 

  • Moritani T, DeVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Rehabil 58:115–130

    CAS  Google Scholar 

  • Petit J, Filippi GM, Gioux M, Hunt CC, Laporte Y (1990) Effects of tetanic contractions of motor units of similar type on the initial stiffness to aramp stretch of cat peroneus longus muscle. J Neurophysiol 64:1724–1732

    PubMed  CAS  Google Scholar 

  • Rittweger J, Beller G, Felsenberg D (2000) Acute physiological effects of exhaustive whole-body vibration exercise in man. Clin Physiol 20:134–142

    Article  PubMed  CAS  Google Scholar 

  • Rittweger J, Schiessl H, Felsenberg D (2001) Oxygen uptake during whole-body vibration exercise: comparison with squatting as a slow voluntary movement. Eur J Appl Physiol 86(2):169–173

    Google Scholar 

  • Roelants M, Delecluse C, Goris M, Verschueren S (2004) Effects of 24 weeks of whole body vibration training on body composition and muscle strength in untrained females. Int J Sports Med 25(1):1–5

    Article  PubMed  CAS  Google Scholar 

  • Roll JP, Vedel JP, Ribot E (1989) Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res 76:213–222

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz K, Rothwell JC (2003) Differential effect of muscle vibration on intracortical inhibitory circuits in humans. J Physiol 551(2):649–660

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz K, Rothwell JC (2004) The effect of sensory input and attention on the sensorimotor organization of the hand area of the human motor cortex. J Physiol 561(1):307–320

    Article  PubMed  CAS  Google Scholar 

  • Ross A, Leveritt M, Riek S (2001) Neural influences on sprint running: training adaptations and acute responses. Sports Med 31(6):409–425

    Article  PubMed  CAS  Google Scholar 

  • Saggini R, Scuderi N, Bellomo RG, Dessy RA, Cancelli F, Iodice P (2006) Selective development of muscular force in the rehabilitative context. Eur Med Phys 42(suppl 1–3):69–67

    Google Scholar 

  • Seidel H (1988) Myoelectric reactions to ultra-low frequency and low-frequency whole body vibration. Eur J Appl Physiol Occup Physiol 57(5):558–562

    Article  PubMed  CAS  Google Scholar 

  • Torvinen S, Kannus P, Sievänen H, Järvinen TA, Pasanen M, Kontulainen S, Järvinen TL, Järvinen M, Oja P, Vuori I (2002a) Effect of a vibration exposure on muscular performance and body balance. Randomized cross-over study. Clin Physiol Funct Imaging 22:145–152

    Article  PubMed  Google Scholar 

  • Torvinen S, Kannus P, Sievänen H, Järvinen TA, Pasanen M, Kontulainen S, Järvinen TL, Järvinen M, Oja P, Vuori I (2002b) Effect of four-month vertical whole body vibration on performance and balance. Med Sci Sports Exerc 34(9):1523–1528

  • Warman G, Humphries B, Purton J (2002) The effects of timing and application of vibration on muscular contractions. Aviat Space Environ Med 73(2):119–127

    PubMed  CAS  Google Scholar 

  • Woodbury JW, Gordon AM, Conrad JT (1968) Muscle. In: Rugh TG, Patton HD, Woodbury JW, Towe AL (eds.) Neurophysiology.WB Saunders, Philadelphia, pp 113–152

  • Yue G, Cole KJ (1992) Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. J Neurophysiol 67:1114–1123

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raoul Saggini.

Additional information

Communicated by Susan Ward.

An erratum to this article is available at http://dx.doi.org/10.1007/s00421-013-2729-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iodice, P., Bellomo, R.G., Gialluca, G. et al. Acute and cumulative effects of focused high-frequency vibrations on the endocrine system and muscle strength. Eur J Appl Physiol 111, 897–904 (2011). https://doi.org/10.1007/s00421-010-1677-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1677-2

Keywords

Navigation