Skip to main content

Advertisement

Log in

Modulation of circulating purines and pyrimidines by physical exercise in the horse

  • Original Paper
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study was designed to examine the influence of sub-maximal exercise on purine and pyrimidine catabolism in horses. Ten horses were initially trained for 12 weeks at the end of which they underwent a standardized exercise test (SET); venous blood samples were taken at rest, 5 and 30 min after the SET. Six untrained healthy horses, from which a blood withdrawal was taken at rest, were used as the control group. Samples were analyzed by HPLC for the simultaneous determination of uric acid, uridine, β-pseudouridine and creatinine in plasma. Glucose and lactate were measured in blood. Trained horses had basal uridine levels significantly lower than sedentary horses. The SET caused significant increase in plasma uric acid, uridine, β-pseudouridine and creatinine. Following the SET, a significant negative correlation was found between plasma uridine and glucose, whilst a significant positive correlation was observed between plasma uric acid and creatinine. These results indicate that increase in energy demand during exercise in the horse causes not only the degradation of purine but also of pyrimidine compounds, the latter possibly exerting a control on glucose uptake as also demonstrated in human beings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addabbo F, Montagnani M, Goligorsky MS (2009) Mitochondria and reactive oxygen species. Hypertension 53:885–892

    CAS  PubMed  Google Scholar 

  • Agüera EI, Rubio MD, Vivo R, Santisteban R, Muñoz A, Castejón F (1995) Blood parameter and heart rate response to training in Andalusian horses. Rev Esp Fisiol 51:55–64

    PubMed  Google Scholar 

  • Amorini AM, Petzold A, Tavazzi B, Eikelenboom J, Keir G, Belli A, Giovannoni G, Di Pietro V, Polman C, D’Urso S, Vagnozzi R, Uitdehaag B, Lazzarino G (2009) Increase of uric acid and purine compounds in biological fluids of multiple sclerosis patients. Clin Biochem 42:1001–1006

    CAS  PubMed  Google Scholar 

  • Burakowski S, Smoleński RT, Bellwon J, Kubasik A, Ciećwierz D, Rynkiewicz A (2007) Exercise stress test and comparison of ST change with cardiac nucleotide catabolite production in patients with coronary artery disease. Cardiol J 14:573–579

    PubMed  Google Scholar 

  • Castejón F, Trigo P, Muñoz A, Riber C (2006) Uric acid responses to endurance racing and relationships with performance, plasma biochemistry and metabolic alterations. Equine Vet J Suppl 36:70–73

    PubMed  Google Scholar 

  • Charette M, Gray MW (2000) Pseudouridine in RNA: what, where, how, and why. IUBMB Life 49:341–351

    CAS  PubMed  Google Scholar 

  • Chorell E, Moritz T, Branth S, Antti H, Svensson MB (2009) Predictive metabolomics evaluation of nutrition-modulated metabolic stress responses in human blood serum during the early recovery phase of strenuous physical exercise. J Proteome Res 8:2966–2977

    CAS  PubMed  Google Scholar 

  • De Moffarts B, Portier K, Kirschvink N, Coudert J, Fellmann N, van Erck E, Letellier C, Motta C, Pincemail J, Art T, Lekeux P (2007) Effects of exercise and oral antioxidant supplementation enriched in (n-3) fatty acids on blood oxidant markers and erythrocyte membrane fluidity in horses. Vet J 174:113–121

    PubMed  Google Scholar 

  • Deussen A, Brand M, Pexa A, Weichsel J (2006) Metabolic coronary flow regulation—current concepts. Basic Res Cardiol 101:453–464

    CAS  PubMed  Google Scholar 

  • Díaz-Araya G, Nettle D, Castro P, Miranda F, Greig D, Campos X, Chiong M, Nazzal C, Corbalán R, Lavandero S (2002) Oxidative stress after reperfusion with primary coronary angioplasty: lack of effect of glucose-insulin-potassium infusion. Crit Care Med 30:417–421

    PubMed  Google Scholar 

  • Dreyer HC, Fujita S, Glynn EL, Drummond MJ, Volpi E, Rasmussen BB (2010) Resistance exercise increases leg muscle protein synthesis and mTOR signalling independent of sex. Acta Physiol (Oxf) 199:71–81

    CAS  Google Scholar 

  • Essén-Gustavsson B, Gottlieb-Vedi M, Lindholm A (1999) Muscle adenine nucleotide degradation during submaximal treadmill exercise to fatigue. Equine Vet J Suppl 30:298–302

    PubMed  Google Scholar 

  • George J, Struthers AD (2009) Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag 5:265–272

    CAS  PubMed  Google Scholar 

  • Giardina B, Penco M, Lazzarino G, Romano S, Tavazzi B, Fedele F, Di Pierro D, Dagianti A (1993) Effectiveness of thrombolysis is associated with a time-dependent increase of malondialdehyde in peripheral blood of patients with acute myocardial infarction. Am J Cardiol 71:788–793

    CAS  PubMed  Google Scholar 

  • Graham-Thiers PM, Kronfeld DS, Kline KA, Sklan DJ, Harris PA (2003) Dietary protein and fat effects on protein status in Arabian horses during interval training and repeated sprints. J Equine Vet Sci 23:554–559

    Google Scholar 

  • Hamada T, Mizuta E, Yanagihara K, Kaetsu Y, Sugihara S, Sonoyama K, Yamamoto Y, Kato M, Igawa O, Shigemasa C, Inokuchi T, Yamamoto T, Shimada T, Ohtahara A, Ninomiya H, Hisatome I (2007) Plasma levels of uridine correlate with blood pressure and indicators of myogenic purine degradation and insulin resistance in hypertensive patients. Circ J 71:354–356

    CAS  PubMed  Google Scholar 

  • Harkness RA (1988) Hypoxanthine, xanthine and uridine in body fluids, indicators of ATP depletion. J Chromatogr B 429:255–278

    CAS  Google Scholar 

  • Harris RC, Marlin DJ, Snow DH (1987) Metabolic response to maximal exercise of 800 and 2,000 m in the thoroughbred horse. J Appl Phys 63:12–19

    CAS  Google Scholar 

  • Keppler A, Gretz N, Schmidt R, Kloetzer HM, Groene HJ, Lelongt B, Meyer M, Sadick M, Pill J (2007) Plasma creatinine determination in mice and rats: an enzymatic method compares favorably with a high-performance liquid chromatography assay. Kidney Int 71:74–78

    CAS  PubMed  Google Scholar 

  • Kypson J, Hait G (1976) Effects of uridine and inosine on glucose metabolism in skeletal muscle and activated lipolysis in adipose tissue. J Pharmacol Exp Ther 199:565–574

    CAS  PubMed  Google Scholar 

  • Lazzarino G, Raatikainen P, Nuutinen M, Nissinen J, Tavazzi B, Di Pierro D, Giardina B, Peuhkurinen K (1994) Myocardial release of malondialdehyde and purine compounds during coronary bypass surgery. Circulation 90:291–297

    CAS  PubMed  Google Scholar 

  • Lazzarino G, Amorini AM, Fazzina G, Vagnozzi R, Signoretti S, Donzelli S, Di Stasio E, Giardina B, Tavazzi B (2003) Single-sample preparation for simultaneous cellular redox and energy state determination. Anal Biochem 322:51–59

    CAS  PubMed  Google Scholar 

  • Liebich HM, Müller-Hagedorn S, Klaus F, Meziane K, Kim KR, Frickenschmidt A, Kammerer B (2005) Chromatographic, capillary electrophoretic and matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of urinary modified nucleosides as tumor markers. J Chromatogr A 1071:271–275

    CAS  PubMed  Google Scholar 

  • Lucke JN, Hall GM (1980) A biochemical study of the Arab Horse Society’s marathon race. Vet Rec 107:523–525

    CAS  PubMed  Google Scholar 

  • Marshall JM (2007) The roles of adenosine and related substances in exercise hyperaemia. J Physiol 583:835–845

    CAS  PubMed  Google Scholar 

  • Masaki Y, Itoh K, Sawaki T, Karasawa H, Kawanami T, Fukushima T, Kawabata H, Wano Y, Hirose Y, Suzuki T, Sugai S, Umehara H (2006) Urinary pseudouridine in patients with lymphoma: comparison with other clinical parameters. Clin Chim Acta 371:148–151

    CAS  PubMed  Google Scholar 

  • McGivney BA, Eivers SS, MacHugh DE, MacLeod JN, O’Gorman GM, Park SD, Katz LM, Hill EW (2009) Transcriptional adaptations following exercise in thoroughbred horse skeletal muscle highlights molecular mechanisms that lead to muscle hypertrophy. BMC Genomics 10:638

    PubMed  Google Scholar 

  • Moens AL, Champion HC, Claeys MJ, Tavazzi B, Kaminski PM, Wolin MS, Borgonjon DJ, Van Nassauw L, Haile A, Zviman M, Bedja D, Wuyts FL, Elsaesser RS, Cos P, Gabrielson KL, Lazzarino G, Paolocci N, Timmermans JP, Vrints CJ, Kass DA (2008) High-dose folic acid pretreatment blunts cardiac dysfunction during ischemia coupled to maintenance of high-energy phosphates and reduces postreperfusion injury. Circulation 117:1810–1819

    CAS  PubMed  Google Scholar 

  • Moyer JD, Oliver JT, Handschumacher RE (1981) Salvage of circulating pyrimidine nucleosides in the rat. Cancer Res 41:3010–3017

    CAS  PubMed  Google Scholar 

  • Piccione G, Giannetto C, Fazio F, Casella S, Caola GA (2009) Comparison of daily rhythm of creatinine and creatine kinase in the sedentary and athlete horse. J Equine Vet Sci 29:575–580

    Google Scholar 

  • Piccione G, Casella S, Giannetto C, Messina V, Monteverde V, Caola G, Guttadauro S (2010) Haematological and haematochemical responses to training and competition in standardbred horses. Comp Clin Pathol l19:95–101

    Google Scholar 

  • Pinho RA, Silva LA, Pinho CA, Scheffer DL, Souza CT, Benetti M, Carvalho T, Dal-Pizzol F (2010) Oxidative stress and inflammatory parameters after an ironman race. Clin J Sport Med 20:306–311

    PubMed  Google Scholar 

  • Pösö AR, Soveri T, Alaviuhkola M, Lindqvist L, Alakuijala L, Mäenpää PH, Oksanen HE (1987) Metabolic responses to exercise in the racehorse: changes in plasma alanine concentration. J Appl Physiol 63:2195–2200

    PubMed  Google Scholar 

  • Räsänen LA, Lampinen KJ, Pösö AR (1995) Responses of blood and plasma lactate and plasma purine concentrations to maximal exercise and their relation to performance in standardbred trotters. Am Vet Res 56:1651–1656

    Google Scholar 

  • Räsänen LA, Wiitanen PA, Lilius EM, Hyyppä S, Pösö AR (1996) Accumulation of uric acid in plasma after repeated bouts of exercise in the horse. Comp Biochem Physiol B 114:139–144

    PubMed  Google Scholar 

  • Refsum HE, Gjessing LR, Strømme SB (1979) Changes in plasma amino acid distribution and urine amino acids excretion during prolonged heavy exercise. Scand J Clin Lab Invest 39:407–413

    CAS  PubMed  Google Scholar 

  • Rosenmeier JB, Yegutkin GG, González-Alonso J (2008) Activation of ATP/UTP-selective receptors increases blood flow and blunts sympathetic vasoconstriction in human skeletal muscle. J Physiol 586:4993–5002

    CAS  PubMed  Google Scholar 

  • Sander G, Hülsemann J, Topp H, Heller-Schöch G, Schöch G (1986) Protein and RNA turnover in preterm infants and adults: a comparison based on urinary excretion of 3-methylhistidine and of modified one-way RNA catabolites. Ann Nutr Metab 30:137–142

    CAS  PubMed  Google Scholar 

  • Schöch G, Topp H, Held A, Heller-Schöch G, Ballauff A, Manz F, Sander G (1990) Interrelation between whole-body turnover rates of RNA and protein. Eur J Clin Nutr 44:647–658

    PubMed  Google Scholar 

  • Schuback K, Essén-Gustavsson B (1998) Muscle anaerobic response to a maximal treadmill exercise test in Standardbred trotters. Equine Vet J 30:504–510

    CAS  PubMed  Google Scholar 

  • Schuback K, Essén-Gustavsson B, Persson SG (2000) Effect of creatine supplementation on muscle metabolic response to a maximal treadmill exercise test in Standardbred horses. Equine Vet J 32:533–540

    CAS  PubMed  Google Scholar 

  • Schuback K, Essén-Gustavsson B, Persson SG (2002) Effect of sodium bicarbonate administration on metabolic responses to maximal exercise. Equine Vet J Suppl 34:539–544

    PubMed  Google Scholar 

  • Snow DH, Harris RC, Gash SP (1985) Metabolic response of equine muscle to intermittent maximal exercise. J Appl Phys 58:1689–1697

    CAS  Google Scholar 

  • Squadrito GL, Cueto R, Splenser AE, Valavanidis A, Zhang H, Uppu RM, Pryor WA (2000) Reaction of uric acid with peroxynitrite and implications for the mechanism of neuroprotection by uric acid. Arch Biochem Biophys 376:333–337

    CAS  PubMed  Google Scholar 

  • Tavazzi B, Lazzarino G, Leone P, Amorini AM, Bellia F, Janson CG, Di Pietro V, Ceccarelli L, Donzelli S, Francis JS, Giardina B (2005) Simultaneous high performance liquid chromatographic separation of purines, pyrimidines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis of inborn errors of metabolism. Clin Biochem 38:997–1008

    CAS  PubMed  Google Scholar 

  • Valberg S, Gustavsson BE, Lindholm A, Persson SG (1989) Blood chemistry and skeletal muscle metabolic responses during and after different speeds and durations of trotting. Equine Vet J 21:91–95

    CAS  PubMed  Google Scholar 

  • Weissman S, Eisen AZ, Lewis M, Karon M (1962) Pseudouridine metabolism. III. Studies with isotopically labeled pseudouridine. J Lab Clin Med 60:40–47

    CAS  PubMed  Google Scholar 

  • White A, Estrada M, Walker K, Wisnia P, Filgueira G, Valdés F, Araneda O, Behn C, Martínez R (2001) Role of exercise and ascorbate on plasma antioxidant capacity in thoroughbred race horses. Comp Biochem Physiol A 128:99–104

    CAS  Google Scholar 

  • Williamson LH, Andrews FM, Maykuth PL, White SL, Green EM (1996) Biochemical changes in three-day-event horses at the beginning, middle and end of Phase C and after Phase D. Equine Vet J Suppl 22:92–98

    PubMed  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Moriwaki Y, Takahashi S, Tsutsumi Z, Yamakita J, Higashino K (1997) Effect of muscular exercise on the concentration of uridine and purine bases in plasma—adenosine triphosphate consumption-induced pyrimidine degradation. Metabolism 46:1339–1342

    CAS  PubMed  Google Scholar 

  • Zinellu A, Caria MA, Tavera C, Sotgia S, Chessa R, Deiana L, Carru C (2005) Plasma creatinine and creatine quantification by capillary electrophoresis diode array detector. Anal Biochem 342:186–193

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by research funds from University of Messina (Alberghina) and University of Catania (Lazzarino). No other disclosures, nor any conflict of interest, were reported.

Conflict of interest

None of the authors has any financial or personal relationships that could inappropriately influence or bias the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Lazzarino.

Additional information

Communicated by Jacques Poortmans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberghina, D., Piccione, G., Amorini, A.M. et al. Modulation of circulating purines and pyrimidines by physical exercise in the horse. Eur J Appl Physiol 111, 549–556 (2011). https://doi.org/10.1007/s00421-010-1673-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1673-6

Keywords

Navigation