Skip to main content
Log in

Separate and combined effects of heat stress and exercise on circulatory markers of oxidative stress in euhydrated humans

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Combined heat stress, dehydration, and exercise is associated with enhanced oxidative stress in humans, but the separate and combined effects of heat stress and exercise on circulatory markers of oxidative stress without the influence of dehydration remain uncertain. The purpose of this study was to determine the effects of whole body heat stress alone and in combination with exercise on blood markers of oxidative stress in euhydrated humans. Eight males wore a water-perfused suit at rest and during 6 min of one-legged knee extensor exercise under control and heat stress conditions while maintaining euhydration. Following the control trial and a 15 min resting period, hot water was perfused through the suit in order to increase core, skin, and mean body temperatures by ~1, ~6, and ~2°C, respectively. Blood samples were taken to measure reduced glutathione (GSH), oxidized glutathione (GSSG), superoxide dismutase (SOD) and plasma isoprostanes. Heat stress alone did not alter GSH, SOD activity, or plasma isoprostanes, but increased GSSG leading to a reduction in the GSH/GSSG ratio. No changes in these variables were observed with exercise alone. Conversely, combined heat stress and exercise increased both GSH and GSSG, decreased SOD activity, but did not alter GSH/GSSG ratio or isoprostanes. In conclusion, these findings suggest that heat stress, independently of dehydration, induces non-radical oxidative stress at rest but not during moderate exercise because an increase in antioxidant defense compensates the heat stress-induced non-radical oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen P, Adams RP, Sjogaard G, Thorboe A, Saltin B (1985) Dynamic knee extensor exercise as model for study of isolated exercising muscle in humans. J Appl Physiol 59(5):1647–1653

    CAS  PubMed  Google Scholar 

  • Bailey DM, Young IS, McEneny J, Lawrenson L, Kim J, Barden J, Richardson RS (2004) Regulation of free radical outflow from an isolated muscle bed in exercising humans. Am J Physiol Heart Circ Physiol 287(4):H1689–H1699

    Article  CAS  PubMed  Google Scholar 

  • Bernabucci U, Ronchi B, Lacetera N, Nardone A (2002) Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. J Dairy Sci 85(9):2173–2179

    Article  CAS  PubMed  Google Scholar 

  • Bruskov VI, Malakhova LV, Masalimov ZK, Chernikov AV (2002) Heat-induced formation of reactive oxygen species and 8-oxoguanine, a biomarker of damage to DNA. Nucleic Acids Res 30(6):1354–1363

    Article  CAS  PubMed  Google Scholar 

  • Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37(2):247–248

    CAS  PubMed  Google Scholar 

  • El-Sayed MS, Ali N, El-Sayed Ali Z (2005) Haemorheology in exercise and training. Sports Med 35(8):649–670

    Article  PubMed  Google Scholar 

  • Fernández JM, Da Silva-Grigoletto ME, Gómez-Puerto JR, Viana-Montaner BH, Tasset-Cuevas I, Túnez I, López-Miranda J, Pérez-Jiménez F (2009) A dose of fructose induces oxidative stress during endurance and strength exercise. J Sports Sci 27(12):1323–1334

    Article  PubMed  Google Scholar 

  • Ferreira LF, Reid MB (2008) Muscle-derived ROS and thiol regulation in muscle fatigue. J Appl Physiol 104(3):853–860

    Article  CAS  PubMed  Google Scholar 

  • Finaud J, Lac G, Filaire E (2006) Oxidative stress: relationship with exercise and training. Sports Med 36(4):327–358

    Article  PubMed  Google Scholar 

  • Fisher-Wellman K, Bloomer RJ (2009) Acute exercise and oxidative stress: a 30 year history. Dyn Med 13:8–11

    Google Scholar 

  • Gohil K, Viguie C, Stanley WC, Brooks GA, Packer L (1988) Blood glutathione oxidation during human exercise. J Appl Physiol 64(1):115–119

    CAS  PubMed  Google Scholar 

  • González-Alonso J, Calbet JA (2003) Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation 107(6):824–830

    Article  PubMed  Google Scholar 

  • González-Alonso J, Calbet JA, Nielsen B (1998) Muscle blood flow is reduced with dehydration during prolonged exercise in humans. J Physiol 15(513):895–905

    Article  Google Scholar 

  • González-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B (1999) Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 86(3):1032–1039

    PubMed  Google Scholar 

  • González-Alonso J, Crandall CG, Johnson JM (2008) The cardiovascular challenge of exercising in the heat. J Physiol 586(1):45–53

    Article  PubMed  Google Scholar 

  • Grasso S, Scifo C, Cardile V, Gulino R, Renis M (2003) Adaptive responses to the stress induced by hyperthermia or hydrogen peroxide in human fibroblasts. Exp Biol Med (Maywood) 228(5):491–498

    CAS  Google Scholar 

  • Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5 Suppl):715S–724S

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge J (2006) Free radicals in biology and medicine, 4th edn. Oxford Bioscience, Boston

  • Hardy JD, Dubois EF (1937) Regulation of heat loss from the human body. Proc Natl Acad Sci USA 23(12):624–631

    Article  CAS  PubMed  Google Scholar 

  • Inayama T, Oka J, Kashiba M, Saito M, Higuchi M, Umegaki K, Yamamoto Y, Matsuda M (2002) Moderate physical exercise induces the oxidation of human blood protein thiols. Life Sci 70(17):2039–2046

    Article  CAS  PubMed  Google Scholar 

  • Ji LL (1993) Antioxidant enzyme response to exercise and aging. Med Sci Sports Exerc 25(2):225–231

    CAS  PubMed  Google Scholar 

  • Ji LL, Fu R (1992) Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide. J Appl Physiol 72(2):549–554

    CAS  PubMed  Google Scholar 

  • Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295(4):C849–C868

    Article  CAS  PubMed  Google Scholar 

  • Kozłowski S, Brzezińska Z, Kruk B, Kaciuba-Uściłko H, Greenleaf JE, Nazar K (1985) Exercise hyperthermia as a factor limiting physical performance: temperature effect on muscle metabolism. J Appl Physiol 59(3):766–773

    PubMed  Google Scholar 

  • Kusmic C, Picano E, Busceti CL, Petersen C, Barsacchi R (2000) The antioxidant drug dipyridamole spares the vitamin E and thiols in red blood cells after oxidative stress. Cardiovasc Res 47(3):510–514

    Article  CAS  PubMed  Google Scholar 

  • MacDougall JD, Reddan WGW, Layton CR, Dempsey JA (1974) Effects of metabolic hyperthermia on performance during heavy prolonged exercise. J Appl Physiol 36(5):538–544

    CAS  PubMed  Google Scholar 

  • McAnulty SR, McAnulty L, Pascoe DD, Gropper SS, Keith RE, Morrow JD, Gladden LB (2005) Hyperthermia increases exercise-induced oxidative stress. Int J Sports Med 26(3):188–192

    Article  CAS  PubMed  Google Scholar 

  • Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208

    CAS  PubMed  Google Scholar 

  • Mitchell JB, Russo A (1983) Thiols, thiol depletion, and thermosensitivity. Radiat Res 95(3):471–485

    Article  CAS  PubMed  Google Scholar 

  • Morrison JP, Coleman MC, Aunan ES, Walsh SA, Spitz DR, Kregel KC (2005) Aging reduces responsiveness to BSO- and heat stress-induced perturbations of glutathione and antioxidant enzymes. Am J Physiol Regul Integr Comp Physiol 289(4):R1035–R1041

    CAS  PubMed  Google Scholar 

  • Morton JP, Maclaren DP, Cable NT, Campbell IT, Evans L, Bongers T, Griffiths RD, Kayani AC, McArdle A, Drust B (2007) Elevated core and muscle temperature to levels comparable to exercise do not increase heat shock protein content of skeletal muscle of physically active men. Acta Physiol (Oxf) 190(4):319–327

    Article  CAS  Google Scholar 

  • Nieman DC, Henson DA, McAnulty SR, McAnulty L, Swick NS, Utter AC, Vinci DM, Opiela SJ, Morrow JD (2002) Influence of vitamin C supplementation on oxidative and immune changes after an ultramarathon. J Appl Physiol 92(5):1970–1977

    CAS  PubMed  Google Scholar 

  • Ohtsuka Y, Yabunaka N, Fujisawa H, Watanabe I, Agishi Y (1994) Effect of thermal stress on glutathione metabolism in human erythrocytes. Eur J Appl Physiol Occup Physiol 68(1):87–91

    Article  CAS  PubMed  Google Scholar 

  • Oztürk O, Gümüşlü S (2004) Age-related changes of antioxidant enzyme activities, glutathione status and lipid peroxidation in rat erythrocytes after heat stress. Life Sci 75(13):1551–1565

    Article  PubMed  Google Scholar 

  • Paik IY, Jeong MH, Jin HE, Kim YI, Suh AR, Cho SY, Roh HT, Jin CH, Suh SH (2009) Fluid replacement following dehydration reduces oxidative stress during recovery. Biochem Biophys Res Commun 383(1):103–107

    Article  CAS  PubMed  Google Scholar 

  • Racinais S, Gaoua N, Grantham J (2008) Hyperthermia impairs short-term memory and peripheral motor drive transmission. J Physiol 586(Pt 19):4751–4762

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan NL (1964) A new weighting system for mean surface temperature of the human body. J Appl Physiol 19:531–533

    CAS  PubMed  Google Scholar 

  • Supinski G, Nethery D, Murhez N, Ciufo R, DiMarco A (1996) Glutathione metabolic responses to loaded breathing: variation among respiratory muscles. J Appl Physiol 3:1362–1369

    Google Scholar 

  • Veskoukis AS, Nikolaidis MG, Kyparos A, Kouretas D (2009) Blood reflects tissue oxidative stress depending on biomarker and tissue studied. Free Radic Biol Med 47(10):1371–1374

    Article  CAS  PubMed  Google Scholar 

  • Zhao QL, Fujiwara Y, Kondo T (2006) Mechanism of cell death induction by nitroxide and hyperthermia. Free Radic Biol Med 40(7):1131–1143

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Steven Trangmar, Dr. James Pearson, and Dr. David Low for their technical support. Orlando Laitano was supported by a scholarship from CAPES (Brazilian Educational Ministry—BEX 0323/08-0). The study was supported by the Brazilian Science and Technology Ministry (Edital MCT/CNPq 14/2008—Universal—473557/2008-8) and partially supported by the Gatorade Sports Science Institute. The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José González-Alonso.

Additional information

Communicated by Narihiko Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laitano, O., Kalsi, K.K., Pook, M. et al. Separate and combined effects of heat stress and exercise on circulatory markers of oxidative stress in euhydrated humans. Eur J Appl Physiol 110, 953–960 (2010). https://doi.org/10.1007/s00421-010-1577-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1577-5

Keywords

Navigation