Skip to main content
Log in

Does central fatigue exist under low-frequency stimulation of a low fatigue-resistant muscle?

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of the present study was to determine whether central fatigue occurs when fatigue is electrically induced in the abductor pollicis brevis muscle. Three series of 17 trains (30 Hz, 450 μs, 4 s on/6 s off, at the maximal tolerated intensity) were used to fatigue the muscle. Neuromuscular tests consisting of electrically evoked and voluntary contractions were performed before and after every 17-train series. Both the force induced by the stimulation trains and maximal voluntary force generation capacity significantly decreased throughout the protocol (−27 and −20%, respectively, at the end of the protocol, P < 0.001). These decreases were accompanied by failure in muscle excitability (P < 0.01), as assessed by the muscle compound action potential (M-wave or Mmax), leading to significant impairment in the muscle contractile properties (P < 0.05), as assessed by the muscle mechanical response (Pt). Central fatigue indices (level of activation, RMS/Mmax and H reflex) were not significantly changed at any point in the protocol. This gives evidence of preserved motor command reaching the motor neurons and preserved spinal excitability. The results indicate that this low-frequency stimulation protocol entails purely peripheral fatigue development when applied to a low fatigue-resistant muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen DG, Westerblad H (2001) Role of phosphate and calcium stores in muscle fatigue. J Physiol 56(3):657–665

    Article  Google Scholar 

  • Allen GM, Gandevia SC, McKenzie DK (1995) Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle Nerve 18:593–600

    Article  CAS  PubMed  Google Scholar 

  • Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    Article  CAS  PubMed  Google Scholar 

  • Badier M, Guillot C, Danger C, Tagliarini F, Jammes Y (1999) M-wave changes after high- and low-frequency electrically induced fatigue in different muscles. Muscle Nerve 22:488–496

    Article  CAS  PubMed  Google Scholar 

  • Barandun M, von Tscharner V, Meuli-Simmen C, Bowen V, Valderrabano V (2009) Frequency and conduction velocity analysis of the abductor pollicis brevis muscle during early fatigue. J Electr Kinesiol 19:65–74

    Article  Google Scholar 

  • Bary BK, Enoka RM (2008) The neurobiology of muscle fatigue: 15 years later. Integr Comp Biol 47(4):465–473

    Article  Google Scholar 

  • Bigland-Ritchie B, Furbush F, Woods JJ (1986) Fatigue of intermittent submaximal voluntary contractions: central and peripheral factors. J Appl Physiol 61(2):421–429

    CAS  PubMed  Google Scholar 

  • Binder-macleod SA, Snyder-Mackler L (1993) Muscle fatigue: clinical implications for fatigue assessment and neuromuscular electrical stimulation. Phys Ther 73:902–910

    CAS  PubMed  Google Scholar 

  • Boerio D, Jubeau M, Zory R, Maffiuletti NA (2005) Central and peripheral fatigue after electrostimulation-induced resistance exercise. Med Sci Sports Exerc 37(6):973–978

    PubMed  Google Scholar 

  • Dahlstedt AJ, Katz A, Westerblad H (2001) Role of myoplasmic phosphate in contractile function of skeletal muscle: studies on creatine kinase-deficient mice. J Physiol 533:379–388

    Article  CAS  PubMed  Google Scholar 

  • Darques JL, Bendahan D, Roussel M, Giannesini B, Tagliarini F, Le Fur Y et al (2003) Combined in situ analysis of metabolic and myoelectrical changes associated with electrically induced fatigue. J Appl Physiol 95:1476–1484

    CAS  PubMed  Google Scholar 

  • Duchateau J (2009) Stimulation conditions can improve the validity of the interpolated twitch technique. J Appl Physiol 107(1):361

    PubMed  Google Scholar 

  • Duchateau J, Hainaut K (1993) Behaviour of short and long latency reflexes in fatigued human muscles. J Physiol 471:787–799

    CAS  PubMed  Google Scholar 

  • Duchateau J, Balestra C, Carpentier A, Hainaut K (2002) Reflex regulation during sustained and intermittent submaximal contractions in humans. J Physiol 541:959–967

    Article  CAS  PubMed  Google Scholar 

  • Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol 586(1):11–23

    Article  CAS  PubMed  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789

    CAS  PubMed  Google Scholar 

  • Gandevia SC, Herbert RD, Leeper JB (1998) Voluntary activation of human elbow flexor muscles during maximal concentric contractions. J Physiol 512(Pt 2):595–602

    Article  Google Scholar 

  • Garland SJ, McComas AJ (1990) Reflex inhibition of human soleus muscle during fatigue. J Physiol 429:17–27

    CAS  PubMed  Google Scholar 

  • Gondin J, Guette M, Ballay Y, Martin A (2005) Electromyostimulation effects on neural drive and muscle architecture. Med Sci Sports Exerc 37(8):1291–1299

    Article  PubMed  Google Scholar 

  • Grossman Y, Parnas I, Spira ME (1979) Differential conduction block in branches of a bifurcating axon. J Physiol 295:283–305

    CAS  PubMed  Google Scholar 

  • Hunter SK, Butler JE, Todd G, Gandevia SC, Taylor JL (2006) Supraspinal fatigue does not explain the sex difference in muscle fatigue of maximal contractions. J Appl Physiol 101:1036–1044

    Article  PubMed  Google Scholar 

  • Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles: an autopsy study. J Neurol Sci 18:111–129

    Article  CAS  PubMed  Google Scholar 

  • Kufel TJ, Pineda LA, Mador MJ (2002) Comparison of potentiated and unpotentiated twitches as an index of muscle fatigue. Muscle Nerve 25:438–444

    Article  PubMed  Google Scholar 

  • Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet G (2002) Neuromuscular fatigue during a long-duration cycling exercise. J Appl Physiol 92:1487–1493

    PubMed  Google Scholar 

  • Martin PG, Smith JL, Butler JE, Gandevia SC, Taylor JL (2006) Fatigue-sensitive afferents inhibit extensor but not flexor motoneurons in humans. J Neurosci 26:4796–4802

    Article  CAS  PubMed  Google Scholar 

  • Mense S, Meyer H (1985) Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J Physiol 363:403–417

    CAS  PubMed  Google Scholar 

  • Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564

    CAS  PubMed  Google Scholar 

  • Millet G, Lepers R, Maffiuletti NA, Babault N, Martin V, Lattier G (2002) Alterations in neuromuscular function after an ultramarathon. J Appl Physiol 92:486–492

    CAS  PubMed  Google Scholar 

  • Pagala MK, Namba T, Grob D (1984) Neuromuscular transmission and contractility during muscle fatigue. Muscle Nerve 7(6):454–464

    Article  CAS  PubMed  Google Scholar 

  • Papaiordanidou M, Guiraud D, Varray A (2010) Kinetics of neuromuscular changes during low-frequency electrical stimulation. Muscle Nerve 41(1):54–62

    Article  PubMed  Google Scholar 

  • Place N, Maffiuletti NA, Martin A, Lepers R (2007) Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve 35:486–495

    Article  PubMed  Google Scholar 

  • Place N, Yamada T, Bruton JD, Westerblad H (2008) Interpolated twitches in fatiguing single mouse muscle fibres: implications for the assessment of central fatigue. J Physiol 586(11):2799–2805

    Article  CAS  PubMed  Google Scholar 

  • Racinais S, Girard O, Micallef JP, Perrey S (2007) Failed excitability of spinal motoneurons induced by prolonged running exercise. J Neurophysiol 97(1):596–603

    Article  CAS  PubMed  Google Scholar 

  • Rassier DE, MacIntosh BR (2000) Coexistence of potentiation and fatigue in skeletal muscle. Braz J Med Biol Res 33:499–508

    Article  CAS  PubMed  Google Scholar 

  • Scott WB, Lee SCK, Johnston TE, Binder-Macleod SA (2005) Switching stimulation patterns improves performance of paralysed human quadriceps muscle. Muscle Nerve 31:581–588

    Article  PubMed  Google Scholar 

  • Smith GV, Alon G, Roys SR, Gullapalli RP (2003) Functional MRI determination of a dose-response relationship to lower extremity neuromuscular electrical stimulation in healthy subjects. Exp Brain Res 150:33–39

    PubMed  Google Scholar 

  • Taylor JL, Todd G, Gandevia SC (2006) Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp PharmacolPhysiol 33:400–405

    Article  CAS  Google Scholar 

  • Zory R, Boerio D, Jubeau M, Maffiuletti NA (2005) Central and peripheral fatigue of the knee extensor muscles induced by electromyostimulation. Int J Sports Med 26:847–853

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the French Higher Education and Research Ministry. The authors would like to thank J.-P. Micallef for his help on the ergometer design.

All experiments presented in the present study comply with the French laws for human experimentation.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Papaiordanidou.

Additional information

Communicated by Alain Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papaiordanidou, M., Guiraud, D. & Varray, A. Does central fatigue exist under low-frequency stimulation of a low fatigue-resistant muscle?. Eur J Appl Physiol 110, 815–823 (2010). https://doi.org/10.1007/s00421-010-1565-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1565-9

Keywords

Navigation