Skip to main content
Log in

The kinanthropometric and pulmonary determinants of global respiratory muscle strength and endurance indices in an athletic population

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The morphological determinants of respiratory muscle (RM) strength and endurance in non-athletic populations are well documented, but are lacking in athletic populations. The purpose of this study was to determine the kinanthropometric and pulmonary predictors of RM strength and endurance. 160 athletes (103 men) were recruited from eight different sports to participate in the study. All subjects underwent a series of kinanthropometric and RM function assessments during a single visit to the laboratory. RM function assessments included the flow-volume curve test to assess pulmonary function, maximum voluntary ventilation (MVV) to assess RM endurance and maximum inspiratory mouth pressure (MIP) and maximum expiratory mouth pressure (MEP) to assess RM strength. Multiple regression analyses revealed that gender, mesomorphy and exercise sessions per week predicted 35% (SEE = 26.6 cmH2O) of the variance in inspiratory muscle strength (MIP). Gender and mesomorphy predicted 24% (SEE = 28.3 cmH2O) of the variance in expiratory muscle strength (MEP), while gender, relative sitting height, forced expiratory volume in 1 s (FEV1) and peak expiratory flow rate (PEFR) predicted 78% (SEE = 18.2 L min−1) of the variance in RM endurance (MVV). Although the reference equations are still not adequate to predict MIP and MEP in an athletic population, they provide more suitable reference values than previously reported. The predicted values derived from the equation for MVV can be applied as adequate reference values for athletic populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ackland TR (2006) Built for success: homogeneity in elite athlete morphology. In: Marfell-Jones M, Stewart A, Olds T (eds) Kinanthropometry IX. Oxon, Routledge, pp 29–38

    Google Scholar 

  • Black LF, Hyatt RE (1969) Maximal respiratory pressures: normal values and relationship to age and sex. Am Rev Resp Dis 99:696–702

    CAS  PubMed  Google Scholar 

  • Bruschi C, Cerveri I, Zoia MC, Fanfulla F, Fiorentini M, Casali C, Grassi M, Grassi C (1992) Reference values for maximal respiratory mouth pressures: a population-based study. Am Rev Resp Dis 146:790–793

    CAS  PubMed  Google Scholar 

  • Chen H, Kuo C (1989) Relationship between respiratory muscle function and age, sex, and other factors. J Appl Physiol 66:943–948

    CAS  PubMed  Google Scholar 

  • Clanton TL, Dixon GF, Drake J, Gadek JE (1987) Effects of swim training on lung volumes and inspiratory muscle conditioning. J Appl Physiol 62:39–46

    CAS  PubMed  Google Scholar 

  • Cordain L, Glisan BJ, Latin RW, Tucker A, Stager JM (1987) Maximal respiratory pressures and pulmonary function in male runners. Br J Sports Med 21:18–22

    Article  CAS  PubMed  Google Scholar 

  • Eastwood PR, Hillman DR, Finucane KE (2001) Inspiratory muscle performance in endurance athletes and sedentary subjects. Respirology 6:95–104

    Article  CAS  PubMed  Google Scholar 

  • Fiz JA, Romero P, Gomez R, Hernandez MC, Ruiz J, Izquierdo J, Coll R, Morera J (1998) Indices of respiratory muscle endurance in healthy subjects. Respiration 65:21–27

    Article  CAS  PubMed  Google Scholar 

  • Fuso L, Di Cosmo B, Nardecchia B, Sammarro S, Pagliari G, Pistelli R (1996) Maximal inspiratory pressure in elite soccer players. J Sports Med Phys Fit 36:67–71

    CAS  Google Scholar 

  • Harik-Khan RI, Wise RA, Fozard J (1998) Determinants of maximal inspiratory pressure: the Baltimore longitudinal study of aging. Am J Resp Crit Care Med 158:1459–1464

    CAS  PubMed  Google Scholar 

  • Hautmann H, Hefele S, Schotten K, Huber RM (2000) Maximal inspiratory mouth pressures (PIMAX) in health subjects—what is the lower limit of normal? Resp Med 94:689–693

    Article  CAS  Google Scholar 

  • Heath BH, Carter JEL (1967) A modified somatotype method. Am J Phys Anthropol 27:57–64

    Article  CAS  PubMed  Google Scholar 

  • Heyward VH, Wagner DR (2004) Applied body composition assessment. Human Kinetics, Champaign

  • Johan A, Chan CC, Chia HP, Chan OY, Wang YT (1997) Maximal respiratory pressures in adult Chinese, Malays and Indians. Eur Resp J 10:2825–2828

    Article  CAS  Google Scholar 

  • Leith DE, Bradley M (1976) Ventilatory muscle strength and endurance training. J Appl Physiol 41:508–516

    CAS  PubMed  Google Scholar 

  • Martin BJ, Chen HI (1982) Ventilatory endurance in athletes: a family study. Int J Sports Med 3:100–104

    Article  CAS  PubMed  Google Scholar 

  • Martin BJ, Stager JM (1981) Ventilatory endurance in athletes and non-athletes. Med Sci Sports Exerc 13:21–26

    CAS  PubMed  Google Scholar 

  • McConnell AK, Copestake AJ (1999) Maximum static respiratory pressures in healthy elderly men and women: issues of reproducibility and interpretation. Respiration 66:251–258

    Article  CAS  PubMed  Google Scholar 

  • Mickleborough TD, Stager JM, Chatham K, Lindley MR, Ionescu AA (2008) Pulmonary adaptations to swim and inspiratory muscle training. Eur J Appl Physiol 103:635–646

    Article  PubMed  Google Scholar 

  • Neder JA, Andreoni S, Lerario MC, Nery LE (1999) Reference values for lung function tests. II. Maximal respiratory pressures and voluntary ventilation. Braz J Med Biol Res 32:719–727

    CAS  PubMed  Google Scholar 

  • Norton K, Marfell-Jones M, Whittingham N, Kerr D, Carter L, Saddington K, Gore C (2000) Anthropometric assessment protocols. In: Core CJ (ed) Physiological tests for elite athletes/Australian Sports Commission. Human Kinetics, Australia, pp 66–85

    Google Scholar 

  • O’Kroy JA, Coast JR (1993) Effects of flow and resistive training on respiratory muscle endurance and strength. Respiration 60:279–283

    Article  PubMed  Google Scholar 

  • Pitsiladis Y, Scott R (2005) The makings of the perfect athlete. Lancet Spec Suppl Sport Med 366:S16–S17

    Google Scholar 

  • Powers SK, Criswell D (1996) Adaptive strategies of respiratory muscles in response to endurance exercise. Med Sci Sports Exerc 28:1115–1122

    CAS  PubMed  Google Scholar 

  • Powers SK, Lawler J, Criswell D, Dodd S, Grinton S, Bagby G, Silverman H (1990) Endurance-training-induced cellular adaptations in respiratory muscles. J Appl Physiol 68:2114–2118

    CAS  PubMed  Google Scholar 

  • Powers SK, Criswell D, Lieu F-K, Dodd S, Silverman H (1992a) Diaphragmatic fiber type specific adaptation to endurance exercise. Resp Physiol 89:195–207

    Article  CAS  Google Scholar 

  • Powers SK, Grinton S, Lawler J, Criswell D, Dodd S (1992b) High intensity exercise training-induced metabolic alterations in respiratory muscles. Resp Physiol 89:169–177

    Article  CAS  Google Scholar 

  • Pringle EM, Latin RW, Berg K (2005) The relationship between 10 km running performance and pulmonary function. J Exerc Physiol 8:22–28

    Google Scholar 

  • Robinson EP, Kjeldgaard JM (1982) Improvement in ventilatory muscle function with running. J Appl Physiol 52:1400–1406

    CAS  PubMed  Google Scholar 

  • Romer LM, McConnell AK (2003) Inter-test reliability for non-invasive measures of respiratory muscle function in healthy humans. Eur J Appl Physiol 91:167–176

    Article  PubMed  Google Scholar 

  • Stewart RI, Basson E (1991) Standardisation of spirometry. SAMJ 79:401–404

    CAS  PubMed  Google Scholar 

  • Uribe JM, Stump CS, Tipton CM, Fregosi RF (1992) Influence of exercise training on the oxidative capacity of rat abdominal muscles. Resp Physiol 88:171–180

    Article  CAS  Google Scholar 

  • Volianitis S, McConnell AK, Jones DA (2001) Assessment of maximum inspiratory mouth pressure. Respiration 68:22–27

    Article  CAS  PubMed  Google Scholar 

  • Wells GD, Plyley M, Thomas S, Goodman L, Duffin J (2005) Effects of concurrent inspiratory and expiratory muscle training on respiratory and exercise performance in competitive swimmers. Eur J Appl Physiol 94:527–540

    Article  PubMed  Google Scholar 

  • Wen AS, Woo MS, Keens TG (1997) How many maneuvers are required to measure maximal inspiratory pressure accurately? Chest 111:802–807

    Article  CAS  PubMed  Google Scholar 

  • Wilson SH, Cooke NT, Edwards RHT, Spiro SG (1984) Predicted normal values for maximal respiratory pressures in Caucasian adults and children. Thorax 39:535–538

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms Cecile Carsten for her valuable assistance with the original data collection. J. Kroff was the recipient of a postgraduate prestigious scholarship from the National Research Foundation (NRF) of South Africa, and a postgraduate merit bursary from Stellenbosch University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacolene Kroff.

Additional information

Communicated by Susan Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroff, J., Terblanche, E. The kinanthropometric and pulmonary determinants of global respiratory muscle strength and endurance indices in an athletic population. Eur J Appl Physiol 110, 49–55 (2010). https://doi.org/10.1007/s00421-010-1468-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1468-9

Keywords

Navigation