Skip to main content
Log in

Skeletal muscle telomere length in healthy, experienced, endurance runners

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Measuring the DNA telomere length of skeletal muscle in experienced endurance runners may contribute to our understanding of the effects of chronic exposure to endurance exercise on skeletal muscle. This study compared the minimum terminal restriction fragment (TRF) length in the vastus lateralis muscle of 18 experienced endurance runners (mean age: 42 ± 7 years) to those of 19 sedentary individuals (mean age: 39 ± 10 years). The runners had covered almost 50,000 km in training and racing over 15 years. Minimum TRF lengths measured in the muscle of both groups were similar (P = 0.805) and within the normal range. Minimum TRF length in the runners, however, was inversely related to their years spent running (r = −0.63, P = 0.007) and hours spent training (r = −0.52, P = 0.035). Therefore, since exposure to endurance running may influence minimum TRF length, and by implication, the proliferative potential of the satellite cells, chronic endurance running may be seen as a stressor to skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allsopp R, Vaziri H, Patterson C et al (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci 89:10114–10118

    Article  PubMed  CAS  Google Scholar 

  • Bergström J (1962) Muscle electrolytes in man. Scand J Clin Lab Med 14:511–513

    Google Scholar 

  • Cherkas LF, Hunkin JL, Kato BS et al (2008) The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med 168(2):154–158

    Article  PubMed  Google Scholar 

  • Collins M, Renault V, Derman EW et al (2003) Athletes with exercise-associated fatigue have abnormally short muscle DNA telomeres. Med Sci Sports Exerc 35(9):1524–1528

    Article  PubMed  CAS  Google Scholar 

  • Crenshaw AG, Fridén J, Thornell LE et al (1991) Extreme endurance training: evidence of capillary and mitochondria compartmentalization in human skeletal muscle. Eur J Appl Physiol Occup Physiol 63(3–4):173–178

    Article  PubMed  CAS  Google Scholar 

  • Decary S, Mouly V, Ben Hamida C et al (1997) Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy. Hum Gene Ther 8:1429–1438

    Article  PubMed  CAS  Google Scholar 

  • Decary S, Ben Hamida C, Mouly V et al (2000) Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromusc Disord 10:113–120

    Article  PubMed  CAS  Google Scholar 

  • Derman W, Schwellnus M, Lambert M et al (1997) The ‘worn-out athlete’: a clinical approach to chronic fatigue in athletes. J Sports Sci 15:341–351

    Article  PubMed  CAS  Google Scholar 

  • Dubowitz V (1985) Muscle biopsy: a practical approach. Baillière Tindall, East Suffix

    Google Scholar 

  • Epel ES, Blackburn EH, Lin J et al (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci 101(49):17312–17315

    Article  PubMed  CAS  Google Scholar 

  • Evans W, Phinney S, Young V (1982) Suction applied to a muscle biopsy maximises sample size. Med Sci Sports Exerc 14(1):101–102

    PubMed  CAS  Google Scholar 

  • Harley C, Futcher A, Greider C (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  PubMed  CAS  Google Scholar 

  • Kadi F, Ponsot E (2009) The biology of satellite cells and telomeres in human skeletal muscle: effects of aging and physical activity. Scand J Med Sci Sports. doi:10.1111/j.1600-0838.2009.00966.x

  • Kadi F, Ponsot E, Piehl-Aulin K et al (2008) The effects of regular strength training on telomere length in human skeletal muscle. Med Sci Sports Exerc 40(1):82–87

    PubMed  Google Scholar 

  • Kuipers H, Janssen G, Bosman F et al (1989) Structural and ultrastructural changes in skeletal muscle associated with long-distance training and running. Int J Sports Med 10(Suppl 3):S156–S159

    Article  PubMed  Google Scholar 

  • Ludlow AT, Zimmerman JB, Witkowski S et al (2008) Relationship between physical activity level, telomere length, and telomerase activity. Med Sci Sports Exerc 40(10):1764–1771

    Article  PubMed  CAS  Google Scholar 

  • Morla M, Busquets X, Pons J et al (2006) Telomere shortening in smokers with and without COPD. Eur Respir J 27(3):525–528

    Article  PubMed  CAS  Google Scholar 

  • Ponsot E, Lexell J, Kadi F (2008) Skeletal muscle telomere length is not impaired in healthy physically active old women and men. Muscle Nerve 37(4):467–472

    Article  PubMed  CAS  Google Scholar 

  • Rae DE, Bosch AN, Collins M et al (2005) The interaction of aging and 10 years of racing on ultraendurance running performance. J Aging Phys Act 13(2):210–222

    PubMed  Google Scholar 

  • Renault V, Piron-Hamelin G, Forestier C et al (2000) Skeletal muscle regeneration and the mitotic clock. Exp Gerontol 35:711–719

    Article  PubMed  CAS  Google Scholar 

  • Renault V, Butler-Browne GS, Mouly V (2002a) Human skeletal muscle satellite cells: aging, oxidative stress and the mitotic clock. Exp Gerontol 37:1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Renault V, Thornell LE, Eriksson PO et al (2002b) Regenerative potential of human skeletal muscle during aging. Aging Cell 1(2):132–139

    Article  PubMed  CAS  Google Scholar 

  • Simon NM, Smoller JW, McNamara KL et al (2006) Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry 60(5):432–435

    Article  PubMed  CAS  Google Scholar 

  • Vaziri H, Schachter F, Uchida I (1993) Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet 52:661–667

    PubMed  CAS  Google Scholar 

  • Warhol MJ, Siegel AJ, Evans WJ et al (1985) Skeletal muscle injury and repair in marathon runners after competition. Am J Pathol 118:331–339

    PubMed  CAS  Google Scholar 

  • Yu JG, Carlsson L, Thornell LE (2004) Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: an ultrastructural and immunoelectron microscopic study. Histochem Cell Biol 121(3):219–227

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by funds from the University of Cape Town, the South African Medical Research Council and the Association Français contre les Myopathies, AFLD, Inserm. Université Pierre et Marie Curie, EU NoE Myores and EU Network Myoage. Support was also provided through the following scholarships: University Scholarships Committee Award, Benfara Scholarship, Waddell Scholarship, KW Johnston Bequest Scholarship and the Marion Beatrice Waddell Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale E. Rae.

Additional information

Communicated by Roberto Bottinelli.

Colin Sinclair-Smith passed away in September 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rae, D.E., Vignaud, A., Butler-Browne, G.S. et al. Skeletal muscle telomere length in healthy, experienced, endurance runners. Eur J Appl Physiol 109, 323–330 (2010). https://doi.org/10.1007/s00421-010-1353-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1353-6

Keywords

Navigation