Skip to main content
Log in

Mountaineering experience decreases the net oxygen cost of climbing Mont Blanc (4,808 m)

  • Original Paper
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to test the hypothesis that mountaineering experience decreases the net oxygen cost of uphill walking (OCw) on steep mountain trails and in ice and snow conditions. OCw was measured during an ascent of Mont Blanc in eight experienced alpinists and eight non-alpinists who were matched for sex (4 + 4) and low-altitude aerobic power (\( \dot{V}{\text{O}}_{{2{ \max }}} \) 50–55 ml kg−1 min−1). Subjects carried a breath-by-breath gas exchange analyzer and a GPS. \( \dot{V}{\text{O}}_{{2{ \max }}} \) at altitude was estimated from measured low-altitude \( \dot{V}{\text{O}}_{{2{\max}}} \) using Bassett’s equation to calculate fractional use of \( \dot{V}{\text{O}}_{{2{ \max }}} \) during the ascent (F\( \dot{V}{\text{O}}_{{2{ \max }}} \)). OCw was calculated as the difference between \( \dot{V}{\text{O}}_{{2}} \) while climbing minus resting \( \dot{V}{\text{O}}_{{2}} \). At all elevations, Alpinists exhibited a lower OCw (P < 0.01). In all subjects, OCw increased when encountering ice and snow conditions. \( {\text{F}}\dot{V}{\text{O}}_{{2{ \max }}} \) remained stable around 75% at all elevations independent of experience or sex. In conclusion, the OCw is lower in experienced mountaineers compared to non-experienced subjects, and increases when going from steep rocky mountain terrain to ice and snow conditions, independent of mountaineering experience or sex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainslie PN, Campbell IT, Frayn KN, Humphreys SM, Maclaren DPM, Reilly T (2002) Physiological and metabolic responses to a hill walk. J Appl Physiol 92:179–187

    CAS  PubMed  Google Scholar 

  • Ainslie PN, Campbell IT, Lambert JP, McLaren DP, Reilly T (2005) Physiological and metabolic aspects of very prolonged exercise with particular reference to hill walking. Sports Med 35:619–647

    Article  PubMed  Google Scholar 

  • Bassett DR, Kyle CR, Passfield L, Broker JP, Burke ER (1999) Comparing cycling world hours records, 1967–1996: modeling with empirical data. Med Sci Sports Exerc 31:1665–1676

    Article  PubMed  Google Scholar 

  • Bastien GJ, Schepens B, Willems PA, Heglund NC (2005) Energetics of load carrying in nepalese porters. Science 308:1755

    Article  CAS  PubMed  Google Scholar 

  • Cymerman A, Pandolf KB, Young AJ, Maher JT (1981) Energy expenditure during load carriage at high altitude. J Appl Physiol Respir Environ Exerc Physiol 51:14–18

    CAS  Google Scholar 

  • Cymerman A, Reeves JT, Rock PB, Groves BM, Malconian MK, Young PM, Wagner PD, Houston CS (1989) Operation Everest II: maximal oxygen uptake at extreme altitude. J Appl Physiol 66:2446–2453

    Article  CAS  PubMed  Google Scholar 

  • di Prampero PE, Atchou G, Brückner JC, Moia C (1986) The energetics of endurance running. Eur J Appl Physiol Occup Physiol 55:259–266

    Article  CAS  PubMed  Google Scholar 

  • Doyon KH, Perrey S, Abe D, Hughson RL (2001) Field testing of VO2 peak in cross-country skiers with portable breath-by-breath system. Can J Appl Physiol 26:1–11

    CAS  PubMed  Google Scholar 

  • Durnin JVGA (1955) The oxygen consumption, energy expenditure, and efficiency of climbing with loads at low altitudes. J Physiol 128:294–309

    CAS  PubMed  Google Scholar 

  • Elliot PR, Atterbom HA (1978) Comparison of exercise responses of males and females during acute exposure to hypobaria. Aviat Space Environ Med 49:415–418

    Google Scholar 

  • Foster C, Lucia A (2007) Running economy: the forgotten factor in elite performance. Sports Med 37:316–319

    Article  PubMed  Google Scholar 

  • Haisman MF, Goldman RF (1974) Effect of terrain on the energy cost of walking with back loads and handcart loads. J Appl Physiol 36:545–548

    CAS  PubMed  Google Scholar 

  • Mazzeo RS (2008) Physiological responses to exercise at altitude: an update. Sports Med 38(1):1–8

    Article  PubMed  Google Scholar 

  • Medbo JI, Tabata I (1989) Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J Appl Physiol 67:1881–1886

    CAS  PubMed  Google Scholar 

  • Minetti AE (1995) Optimum gradient of mountain paths. J Appl Physiol 79:1698–1703

    CAS  PubMed  Google Scholar 

  • Minetti AE, Moia C, GS ROI, Susta D, Ferretti G (2002) Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol 93:1039–1046

    PubMed  Google Scholar 

  • Morgan DW, Craib M (1992) Physiological aspects of running economy. Med Sci Sports Exerc 24:456–461

    CAS  PubMed  Google Scholar 

  • Muza SR, Rock PB, Fulco CS, Zamudio S, Braun B, Cymerman A, Butterfield GE, Moore LG (2001) Women at altitude: ventilatory acclimatization at 4,300 m. J Appl Physiol 91:1791–1799

    CAS  PubMed  Google Scholar 

  • Oelz O, Howald H, di Prampero PE, Hoppeler H, Claassen H, Jenni R, Buhlman A, Ferretti G, Brückner JC, Veicsteinas A, Gussoni m, Cerretelli P (1986) Physiological profile of world-class high-altitude climbers. J Appl Physiol 60:1734–1742

    CAS  PubMed  Google Scholar 

  • Olfert IM, Balouch J, Kleinsasser A, Knapp A, Wagner H, Wagner PD, Hopkins SR (2004) Does gender affect human pulmonary gas exchange during exercise? J Physiol 557:529–541

    Article  CAS  PubMed  Google Scholar 

  • Péronnet F, Bouissou P, Perrault H, Ricci J (1989) A comparison of cyclists’ time records according to altitude and materials used. Can J Sport Sci 14:93–98

    PubMed  Google Scholar 

  • Pugh LGCE (1958) Muscular exercise on Mount Everest. J Physiol 141:233–261

    CAS  PubMed  Google Scholar 

  • Pugh LGCE (1967) Cold stress and muscular exercise, with special reference to accidental hypothermia. Br Med J 2:333–337

    Article  CAS  PubMed  Google Scholar 

  • Pugh LGCE (1972) Maximum oxygen intake in Himalayan mountaineers. Ergonomics 15:133–137

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy SS, Dua GL, Raizada VK, Dimri GP, Viswanathan KR, Madhaviah J, Srivastava TN (1966) Effect of looseness of snow on energy expenditure in marching on snow-covered ground. J Appl Physiol 21:1747–1749

    CAS  PubMed  Google Scholar 

  • Saha H (1958) Studies on the oxygen uptake and efficiency of climbing of Tensing Nor-gay and other subjects. Q J Exp Physiol Cogn Med Sci 43:295–299

    CAS  PubMed  Google Scholar 

  • Sharma S, Brown B (2007) Spirometry and respiratory muscle function during ascent to higher altitudes. Lung 185:113–121

    Article  PubMed  Google Scholar 

  • Soule RG, Goldman RF (1972) Terrain coefficient for energy cost prediction. J Appl Physiol 32:706–708

    CAS  PubMed  Google Scholar 

  • Tsianos G, Woolrich-Burt L, Aitchison T, Peacock A, Watt M, Montgomery H, Watt I, Grant S (2006) Factors affecting a climber’s ability to ascend Montblanc. Eur J Appl Physiol 96:32–36

    Article  CAS  PubMed  Google Scholar 

  • Wagner JA, Miles DS, Horvarth SM, Reyburn JA (1979) Maximal work capacity of women during acute hypoxia. J Appl Physiol 47:1223–1227

    CAS  PubMed  Google Scholar 

  • Weller AS, Millard CE, Stroud MA, Greenhaff PL, Macdonald IA (1997) Physiological responses to a cold, wet, and windy environment during prolonged intermittent walking. J Appl Physiol 272:R226–R233

    CAS  Google Scholar 

  • Westerterp KR, Kayser B, Brouns F, Herry JP, Saris WH (1992) Energy expenditure climbing Mt. Everest. J Appl Physiol 73:1815–1819

    CAS  PubMed  Google Scholar 

  • Woorons X, Mollard P, Lamberto C, Letournel M, Richalet JP (2005) Effect of acute hypoxia on maximal exercise in trained and sedentary women. Med Sci Sports Exerc 37:147–154

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Genopole® Evry, France, Saint Gervais city, the CCAS of EDF-GDF and Millet Company (Annecy, France), the Mont Blanc Company (Les Houches), the village of Saint Gervais, and Jean Marc Peillex. Special thanks to Drs. Jean and Corinne Blanchard, M.D. and Laurence Abraham, M.D..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronique L. Billat.

Additional information

Communicated by Susan Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billat, V.L., Dupré, M., Karp, J.R. et al. Mountaineering experience decreases the net oxygen cost of climbing Mont Blanc (4,808 m). Eur J Appl Physiol 108, 1209–1216 (2010). https://doi.org/10.1007/s00421-009-1334-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1334-9

Keywords

Navigation