Skip to main content
Log in

Men and women exhibit a similar time to task failure for a sustained, submaximal elbow extensor contraction

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Sex differences in muscle fatigue-resistance have been observed in a variety of muscles and under several conditions. This study compared the time to task failure (TTF) of a sustained isometric elbow extensor (intensity 15% of maximal strength) contraction in young men (n = 12) and women (n = 11), and examined if their neurophysiologic adjustments to fatigue differed. Motor-evoked potential amplitude (MEP), silent period duration, interference electromyogram (EMG) amplitude, maximal muscle action potential (M max), heart rate, and mean arterial pressure were measured at baseline, during the task, and during a 2-min ischemia period. Men and women did not differ in TTF (478.2 ± 31.9 vs. 500.4 ± 41.3 s; P = 0.67). We also performed an exploratory post hoc cluster analysis, and classified subjects as low (n = 15) or high endurance (n = 8) based on TTF (415.3 ± 16.0 vs. 626.7 ± 25.8 s, respectively). The high-endurance group exhibited a lower MEP and EMG at baseline (MEP 16.3 ± 4.1 vs. 37.2 ± 3.0% M max, P < 0.01; EMG 0.98 ± 0.18 vs. 1.85 ± 0.26% M max, P = 0.03). These findings suggest no sex differences in elbow extensor fatigability, in contrast to observations from other muscle groups. The cluster analyses results indicated that high- and low-endurance groups displayed neurophysiologic differences at baseline (before performing the fatigue task), but that they did not differ in fatigue-induced changes in their neurophysiologic adjustments to the task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alam M, Smirk FH (1937) Observations in man upon a blood pressure raising reflex arising from the voluntary muscles. J Physiol 89:372–383

    CAS  PubMed  Google Scholar 

  • Barry BK, Enoka RM (2007) The neurobiology of muscle fatigue: 15 years later. Integr Comp Biol 47:465–473

    Article  Google Scholar 

  • Basmajian JD, DeLuca CJ (1985) Muscle alive: their functions revealed by electromyography. Williams and Wilkins

  • Clark BC, Manini TM, The DJ, Doldo NA, Ploutz-Snyder LL (2003) Gender differences in skeletal muscle fatigability are related to contraction type and EMG spectral compression. J Appl Physiol 94:2263–2272

    PubMed  Google Scholar 

  • Clark BC, Collier SR, Manini TM, Ploutz-Snyder LL (2005) Sex differences in muscle fatigability and activation patterns of the human quadriceps femoris. Eur J Appl Physiol 94:196–206

    Article  PubMed  Google Scholar 

  • Damron LA, Dearth DJ, Hoffman RL, Clark BC (2008) Quantification of the corticospinal silent period evoked via transcranial magnetic stimulation. J Neurosci Methods 173:121–128

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol 508(Pt 2):625–633

    Article  CAS  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali PA, Rothwell JC (2004) The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 115:255–266

    Article  CAS  PubMed  Google Scholar 

  • Ditor DS, Hicks AL (2000) The effect of age and gender on the relative fatigability of the human adductor pollicis muscle. Can J Physiol Pharmacol 78:781–790

    Article  CAS  PubMed  Google Scholar 

  • Elder GC, Bradbury K, Roberts R (1982) Variability of fiber type distributions within human muscles. J Appl Physiol 53:1473–1480

    CAS  PubMed  Google Scholar 

  • Enoka RM, Stuart DG (1992) Neurobiology of muscle fatigue. J Appl Physiol 72:1631–1648

    Article  CAS  PubMed  Google Scholar 

  • Farina D, Merletti R, Enoka RM (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96:1486–1495

    Article  PubMed  Google Scholar 

  • Fulco CS, Rock PB, Muza SR, Lammi E, Cymerman A, Butterfield G, Moore LG, Braun B, Lewis SF (1999) Slower fatigue and faster recovery of the adductor pollicis muscle in women matched for strength with men. Acta Physiol Scand 167:233–239

    Article  CAS  PubMed  Google Scholar 

  • Fulco CS, Rock PB, Muza SR, Lammi E, Braun B, Cymerman A, Moore LG, Lewis SF (2001) Gender alters impact of hypobaric hypoxia on adductor pollicis muscle performance. J Appl Physiol 91:100–108

    CAS  PubMed  Google Scholar 

  • Gandevia SC, Petersen N, Butler JE, Taylor JL (1999) Impaired response of human motoneurones to corticospinal stimulation after voluntary exercise. J Physiol 521(Pt 3):749–759

    Article  CAS  PubMed  Google Scholar 

  • Hicks AL, Kent-Braun J, Ditor DS (2001) Sex differences in human skeletal muscle fatigue. Exerc Sport Sci Rev 29:109–112

    Article  CAS  PubMed  Google Scholar 

  • Hunter SK (2009) Sex differences and mechanisms of task-specific muscle fatigue. Exerc Sport Sci Rev 37:113–122

    Article  PubMed  Google Scholar 

  • Hunter SK, Enoka RM (2001) Sex differences in the fatigability of arm muscles depends on absolute force during isometric contractions. J Appl Physiol 91:2686–2694

    CAS  PubMed  Google Scholar 

  • Hunter SK, Critchlow A, Shin IS, Enoka RM (2004) Men are more fatigable than strength-matched women when performing intermittent submaximal contractions. J Appl Physiol 96:2125–2132

    Article  PubMed  Google Scholar 

  • Hunter SK, Butler JE, Todd G, Gandevia SC, Taylor JL (2006) Supraspinal fatigue does not explain the sex difference in muscle fatigue of maximal contractions. J Appl Physiol 101:1036–1044

    Article  PubMed  Google Scholar 

  • Hunter SK, Griffith EE, Schlachter KM, Kufahl TD (2009) Sex differences in time to task failure and blood flow for an intermittent isometric fatiguing contraction. Muscle Nerve 39:42–53

    Article  PubMed  Google Scholar 

  • Kaneko K, Kawai S, Fuchigami Y, Shiraishi G, Ito T (1996) Effect of stimulus intensity and voluntary contraction on corticospinal potentials following transcranial magnetic stimulation. J Neurol Sci 139:131–136

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2:145–156

    Article  PubMed  Google Scholar 

  • Martin PG, Rattey J (2007) Central fatigue explains sex differences in muscle fatigue and contralateral cross-over effects of maximal contractions. Pflugers Arch 454:957–969

    Article  CAS  PubMed  Google Scholar 

  • Martin PG, Smith JL, Butler JE, Gandevia SC, Taylor JL (2006) Fatigue-sensitive afferents inhibit extensor but not flexor motoneurons in humans. J Neurosci 26:4796–4802

    Article  CAS  PubMed  Google Scholar 

  • Maughan RJ, Harmon M, Leiper JB, Sale D, Delman A (1986) Endurance capacity of untrained males and females in isometric and dynamic muscular contractions. Eur J Appl Physiol Occup Physiol 55:395–400

    Article  CAS  PubMed  Google Scholar 

  • Mottram CJ, Hunter SK, Rochette L, Anderson MK, Enoka RM (2006) Time to task failure varies with the gain of the feedback signal for women, but not for men. Exp Brain Res 174:575–587

    Article  PubMed  Google Scholar 

  • Russ DW, Kent-Braun JA (2003) Sex differences in human skeletal muscle fatigue are eliminated under ischemic conditions. J Appl Physiol 94:2414–2422

    PubMed  Google Scholar 

  • Russ DW, Lanza IR, Rothman D, Kent-Braun JA (2005) Sex differences in glycolysis during brief, intense isometric contractions. Muscle Nerve 32:647–655

    Article  CAS  PubMed  Google Scholar 

  • Seals DR, Enoka RM (1989) Sympathetic activation is associated with increases in EMG during fatiguing exercise. J Appl Physiol 66:88–95

    CAS  PubMed  Google Scholar 

  • Sinoway LI, Li J (2005) A perspective on the muscle reflex: implications for congestive heart failure. J Appl Physiol 99:5–22

    Article  CAS  PubMed  Google Scholar 

  • Taylor JL, Gandevia SC (2008) A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J Appl Physiol 104:542–550

    Article  PubMed  Google Scholar 

  • Yoon T, Schlinder Delap B, Griffith EE, Hunter SK (2007) Mechanisms of fatigue differ after low- and high-force fatiguing contractions in men and women. Muscle Nerve 36:515–524

    Article  PubMed  Google Scholar 

  • Ziemann U (2004) TMS and drugs. Clin Neurophysiol 115:1717–1729

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Clark.

Additional information

Communicated by Susan Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dearth, D.J., Umbel, J., Hoffman, R.L. et al. Men and women exhibit a similar time to task failure for a sustained, submaximal elbow extensor contraction. Eur J Appl Physiol 108, 1089–1098 (2010). https://doi.org/10.1007/s00421-009-1323-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1323-z

Keywords

Navigation