Skip to main content

Advertisement

Log in

Respiratory muscle endurance training: effect on normoxic and hypoxic exercise performance

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of respiratory muscle endurance training on endurance exercise performance in normoxic and hypoxic conditions. Eighteen healthy males were stratified for age and aerobic capacity; and randomly assigned either to the respiratory muscle endurance training (RMT = 9) or to the control training group (CON = 9). Both groups trained on a cycle-ergometer 1 h day−1, 5 days per week for a period of 4 weeks at an intensity corresponding to 50% of peak power output. Additionally, the RMT group performed a 30-min specific endurance training of respiratory muscles (isocapnic hyperpnea) prior to the cycle ergometry. Pre, Mid, Post and 10 days after the end of training period, subjects conducted pulmonary function tests (PFTs), maximal aerobic tests in normoxia (\( {\dot{V}} \)O2maxNOR), and in hypoxia (\( {\dot{V}} \)O2maxHYPO; FIO2 = 0.12); and constant-load tests at 80% of \( {\dot{V}} \)O2maxNOR in normoxia (CLTNOR), and in hypoxia (CLTHYPO). Both groups enhanced \( {\dot{V}} \)O2maxNOR (CON: +13.5%; RMT: +13.4%), but only the RMT group improved \( {\dot{V}} \)O2maxHYPO Post training (CON: −6.5%; RMT: +14.2%). Post training, the CON group increased peak power output, whereas the RMT group had higher values of maximum ventilation. Both groups increased CLTNOR duration (CON: +79.9%; RMT: +116.6%), but only the RMT group maintained a significantly higher CLTNOR 10 days after training (CON: +56.7%; RMT: +91.3%). CLTHYPO remained unchanged in both groups. Therefore, the respiratory muscle endurance training combined with cycle ergometer training enhanced aerobic capacity in hypoxia above the control values, but did not in normoxia. Moreover, no additional effect was obtained during constant-load exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Babcock MA, Johnson BD, Pegelow DF, Suman OE, Griffin D, Dempsey JA (1995) Hypoxic effects on exercise-induced diaphragmatic fatigue in normal healthy humans. J Appl Physiol 78:82–92

    CAS  PubMed  Google Scholar 

  • Bauerle O, Younes M (1995) Role of ventilatory response to exercise in determining exercise capacity in COPD. J Appl Physiol 79:1870–1877

    CAS  PubMed  Google Scholar 

  • Boutellier U, Piwko P (1992) The respiratory system as an exercise limiting factor in normal sedentary subjects. Eur J Appl Physiol Occup Physiol 64:145–152

    Article  CAS  PubMed  Google Scholar 

  • Boutellier U, Buchel R, Kundert A, Spengler C (1992) The respiratory system as an exercise limiting factor in normal trained subjects. Eur J Appl Physiol Occup Physiol 65:347–353

    Article  CAS  PubMed  Google Scholar 

  • Calbet JA, Boushel R, Radegran G, Sondergaard H, Wagner PD, Saltin B (2003) Determinants of maximal oxygen uptake in severe acute hypoxia. Am J Physiol Regul Integr Comp Physiol 284:R291–R303

    CAS  PubMed  Google Scholar 

  • Cibella F, Cuttitta G, Kayser B, Narici M, Romano S, Saibene F (1996) Respiratory mechanics during exhaustive submaximal exercise at high altitude in healthy humans. J Physiol 494(Pt 3):881–890

    CAS  PubMed  Google Scholar 

  • Cullinane EM, Sady SP, Vadeboncoeur L, Burke M, Thompson PD (1986) Cardiac size and VO2max do not decrease after short-term exercise cessation. Med Sci Sports Exerc 18:420–424

    CAS  PubMed  Google Scholar 

  • Dempsey JA, Wagner PD (1999) Exercise-induced arterial hypoxemia. J Appl Physiol 87:1997–2006

    CAS  PubMed  Google Scholar 

  • Dempsey JA, Romer L, Rodman J, Miller J, Smith C (2006) Consequences of exercise-induced respiratory muscle work. Respir Physiol Neurobiol 151:242–250

    Article  PubMed  Google Scholar 

  • Downey AE, Chenoweth LM, Townsend DK, Ranum JD, Ferguson CS, Harms CA (2007) Effects of inspiratory muscle training on exercise responses in normoxia and hypoxia. Respir Physiol Neurobiol 156:137–146

    Article  PubMed  Google Scholar 

  • Fairbarn MS, Coutts KC, Pardy RL, McKenzie DC (1991) Improved respiratory muscle endurance of highly trained cyclists and the effects on maximal exercise performance. Int J Sports Med 12:66–70

    Article  CAS  PubMed  Google Scholar 

  • Harms CA, Wetter TJ, St Croix CM, Pegelow DF, Dempsey JA (2000) Effects of respiratory muscle work on exercise performance. J Appl Physiol 89:131–138

    CAS  PubMed  Google Scholar 

  • Holm P, Sattler A, Fregosi RF (2004) Endurance training of respiratory muscles improves cycling performance in fit young cyclists. BMC Physiol 4:9

    Article  PubMed  Google Scholar 

  • Kinnula VL, Sovijarvi AR (1996) Hyperventilation during exercise: independence on exercise-induced bronchoconstriction in mild asthma. Respir Med 90:145–151

    Article  CAS  PubMed  Google Scholar 

  • Langton JA, Hanning CD (1990) Effect of motion artefact on pulse oximeters: evaluation of four instruments and finger probes. Br J Anaesth 65:564–570

    Article  CAS  PubMed  Google Scholar 

  • Leddy JJ, Limprasertkul A, Patel S, Modlich F, Buyea C, Pendergast DR, Lundgren CE (2007) Isocapnic hyperpnea training improves performance in competitive male runners. Eur J Appl Physiol 99:665–676

    Article  PubMed  Google Scholar 

  • Mador MJ, Acevedo FA (1991) Effect of respiratory muscle fatigue on subsequent exercise performance. J Appl Physiol 70:2059–2065

    CAS  PubMed  Google Scholar 

  • Martin B, Heintzelman M, Chen HI (1982) Exercise performance after ventilatory work. J Appl Physiol 52:1581–1585

    CAS  PubMed  Google Scholar 

  • Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J (2005) Standardisation of spirometry. Eur Respir J 26:319–338

    Article  CAS  PubMed  Google Scholar 

  • Morgan DW, Kohrt WM, Bates BJ, Skinner JS (1987) Effects of respiratory muscle endurance training on ventilatory and endurance performance of moderately trained cyclists. Int J Sports Med 8:88–93

    Article  CAS  PubMed  Google Scholar 

  • Mujika I, Padilla S (2001) Cardiorespiratory and metabolic characteristics of detraining in humans. Med Sci Sports Exerc 33:413–421

    Article  CAS  PubMed  Google Scholar 

  • Reybrouck T, Heigenhauser GF, Faulkner JA (1975) Limitations to maximum oxygen uptake in arms, leg, and combined arm-leg ergometry. J Appl Physiol 38:774–779

    CAS  PubMed  Google Scholar 

  • Romer LM, Dempsey JA, Lovering A, Eldridge M (2006) Exercise-induced arterial hypoxemia: consequences for locomotor muscle fatigue. Adv Exp Med Biol 588:47–55

    Article  PubMed  Google Scholar 

  • Roussos C (1985) Function and fatigue of respiratory muscles. Chest 88:124S–132S

    CAS  PubMed  Google Scholar 

  • Sartori R, Barbi E, Poli F, Ronfani L, Marchetti F, Amaddeo A, Ventura A (2008) Respiratory training with a specific device in cystic fibrosis: a prospective study. J Cyst Fibros 7:313–319

    Article  CAS  PubMed  Google Scholar 

  • Sheel AW (2002) Respiratory muscle training in healthy individuals: physiological rationale and implications for exercise performance. Sports Med 32:567–581

    Article  PubMed  Google Scholar 

  • Sheel AW, Derchak PA, Morgan BJ, Pegelow DF, Jacques AJ, Dempsey JA (2001) Fatiguing inspiratory muscle work causes reflex reduction in resting leg blood flow in humans. J Physiol 537:277–289

    Article  CAS  PubMed  Google Scholar 

  • Sonetti DA, Wetter TJ, Pegelow DF, Dempsey JA (2001) Effects of respiratory muscle training versus placebo on endurance exercise performance. Respir Physiol 127:185–199

    Article  CAS  PubMed  Google Scholar 

  • Spengler CM, Boutellier U (2000) Breathless legs? Consider training your respiration. News Physiol Sci 15:101–105

    PubMed  Google Scholar 

  • Spengler CM, Roos M, Laube SM, Boutellier U (1999) Decreased exercise blood lactate concentrations after respiratory endurance training in humans. Eur J Appl Physiol Occup Physiol 79:299–305

    Article  CAS  PubMed  Google Scholar 

  • St Croix CM, Morgan BJ, Wetter TJ, Dempsey JA (2000) Fatiguing inspiratory muscle work causes reflex sympathetic activation in humans. J Physiol 529(Pt 2):493–504

    Article  CAS  PubMed  Google Scholar 

  • Stuessi C, Spengler CM, Knopfli-Lenzin C, Markov G, Boutellier U (2001) Respiratory muscle endurance training in humans increases cycling endurance without affecting blood gas concentrations. Eur J Appl Physiol 84:582–586

    Article  CAS  PubMed  Google Scholar 

  • Verges S, Lenherr O, Haner AC, Schulz C, Spengler CM (2007) Increased fatigue resistance of respiratory muscles during exercise after respiratory muscle endurance training. Am J Physiol Regul Integr Comp Physiol 292:R1246–R1253

    CAS  PubMed  Google Scholar 

  • Verges S, Boutellier U, Spengler CM (2008) Effect of respiratory muscle endurance training on respiratory sensations, respiratory control and exercise performance: a 15-year experience. Respir Physiol Neurobiol 161:16–22

    Article  PubMed  Google Scholar 

  • Vogiatzis I, Georgiadou O, Koskolou M, Athanasopoulos D, Kostikas K, Golemati S, Wagner H, Roussos C, Wagner PD, Zakynthinos S (2007) Effects of hypoxia on diaphragmatic fatigue in highly trained athletes. J Physiol 581:299–308

    Article  CAS  PubMed  Google Scholar 

  • Wilson RC, Jones PW (1991) Long-term reproducibility of Borg scale estimates of breathlessness during exercise. Clin Sci (Lond) 80:309–312

    CAS  Google Scholar 

  • Wylegala JA, Pendergast DR, Gosselin LE, Warkander DE, Lundgren CE (2007) Respiratory muscle training improves swimming endurance in divers. Eur J Appl Physiol 99:393–404

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The current project was funded, in part, by the Olympic Committee of Slovenia, and by a “Knowledge for Security and Peace” grant from the Ministry of Defense (Republic of Slovenia). Moreover, we would like to thank all the subjects for their time and effort. Finally yet importantly, we would like to thank all the personnel of Adria Lab for their technical support.

Conflict of interest statement

The authors state that there is no personal of financial conflict of interest in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michail E. Keramidas.

Additional information

Communicated by Susan Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keramidas, M.E., Debevec, T., Amon, M. et al. Respiratory muscle endurance training: effect on normoxic and hypoxic exercise performance. Eur J Appl Physiol 108, 759–769 (2010). https://doi.org/10.1007/s00421-009-1286-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1286-0

Keywords

Navigation